
ar
X

iv
:1

91
2.

09
85

9v
3 

 [
cs

.L
G

] 
 2

5 
M

ar
 2

02
0

1

Lightweight and Unobtrusive Data Obfuscation at

IoT Edge for Remote Inference
Dixing Xu, Student Member, IEEE, Mengyao Zheng, Linshan Jiang, Student Member, IEEE,

Chaojie Gu, Student Member, IEEE, Rui Tan, Senior Member, IEEE, and Peng Cheng, Member, IEEE

Abstract—Executing deep neural networks for inference on
the server-class or cloud backend based on data generated at
the edge of Internet of Things is desirable due primarily to the
limited compute power of edge devices and the need to protect
the confidentiality of the inference neural networks. However,
such a remote inference scheme incurs concerns regarding the
privacy of the inference data transmitted by the edge devices
to the curious backend. This paper presents a lightweight and
unobtrusive approach to obfuscate the inference data at the edge
devices. It is lightweight in that the edge device only needs to
execute a small-scale neural network; it is unobtrusive in that
the edge device does not need to indicate whether obfuscation is
applied. Extensive evaluation by three case studies of free spoken
digit recognition, handwritten digit recognition, and American
sign language recognition shows that our approach effectively
protects the confidentiality of the raw forms of the inference data
while effectively preserving the backend’s inference accuracy.

Index Terms—Internet of Things, edge computing, deep neural
networks, privacy, data obfuscation

I. INTRODUCTION

THE fast development of sensing and communication tech-

nologies and the wide deployment of Internet-enabled

smart objects in the physical environments foster the forming

of the Internet of Things (IoT) as a main data generation

infrastructure in the world. The tremendous amount of IoT data

provides great opportunities for various applications powered

by advanced machine learning (ML) technologies.

IoT in nature is a distributed system consisting of nodes

equipped with sensing, computing, and communication capa-

bilities. In order to build scalable and efficient applications

on top of IoT, edge computing is a promising hierarchical

system paradigm [1]. In edge computing, the widespread

network edge devices (e.g., home gateways, set-top boxes, and

personal smartphones) collect and process the data from the

end devices that are normally smart objects deeply embedded

This work was supported in part by an NTU Start-up Grant, in part by
an MOE AcRF Tier 1 grant (2019-T1-001-044), in part by HP-NTU Digital
Manufacturing Corporate Lab (AI-003) funded by the Singapore Government
through the Industry Alignment Fund-Industry Collaboration Projects Grant,
in part by NSFC under grants 61761136012 and 61533015.

Dixing Xu and Mengyao Zheng contributed equally to this research. They
are with Xi’an Jiaotong-Liverpool University. This work was completed when
Dixing Xu was visiting Nanyang Technological University (NTU) and then
Zhejiang University (ZJU), and when Mengyao Zheng was visiting NTU.
(e-mail: {dixing.xu15, mengyao.zheng16}@student.xjtlu.edu.cn)

Linshan Jiang, Chaojie Gu and Rui Tan are with NTU. (e-mail: {linshan001,
gucj, tanrui}@ntu.edu.sg)

Peng Cheng is with ZJU. (e-mail: pcheng@iipc.zju.edu.cn)
Copyright (c) 20xx IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

in the physical environments (e.g., smart toothbrushes, smart

body scales, smart wearables, and various embedded sensors).

Then, the edge devices interact with the cloud backends of the

applications to exchange data and/or commands.

Compared with the conventional cloud computing scheme

that performs most of the computation in the centralized cloud

servers, edge computing offers several merits including in-

creased scalability, shortened end-to-end latency, and reduced

communication bandwidth usage [1]. Deploying ML technolo-

gies (in particular, deep neural networks) in edge computing

systems has attracted increasing research interests [2]. In many

cases, as deep neural network designing and training are

expertise-intensive and resource-consuming, IoT applications

often prefer to use pre-trained inference models on the data

generated at the IoT edge. However, the implementation of

the IoT edge that can leverage the latest ML technologies for

inference faces two challenges:

Separation of data sources and ML compute power: With

the advances of deep learning, the depth of inference models

and the needed compute power to support these deep inference

models increase drastically. Thus, the execution of these deep

inference models on the IoT end or edge devices that have

limited compute resources may be infeasible or cause too

long inference time. Moreover, the execution of deep inference

models on battery-based edge devices (e.g., smartphones) may

not be desirable due to high power consumption. A remote

server-class or cloud backend with abundant ML compute

power including powerful hardware acceleration is still desired

for deep inference model execution.

Confidentiality of inference models: A deployable inference

model often requires significant efforts in model training

and manual tuning. Thus, an inference model in general

contains intellectual properties under the enterprise settings.

Even when the edge devices can execute the model and

meet timing/energy constraints, deploying the inference model

to the edge devices in the wild may lead to the risk of

intellectual property infringement (e.g., extraction of the model

from the edge device memory). Moreover, the leak of the

inference model can aggravate the cybersecurity concern of

adversarial examples [3]. Therefore, it is desirable to protect

the confidentiality of the deep inference models.

To address the above two issues, remote inference is a

natural solution, in which an edge device sends the inference

data to the backend, then the backend executes the inference

model and sends back the result. It forms a specific interaction

paradigm between the IoT edge and the backend in edge

http://arxiv.org/abs/1912.09859v3


2

computing systems. There are existing applications adopting

remote inference. PictureThis [4], a mobile App, captures

a picture of plant using the smartphone’s camera and then

sends the picture to the cloud backend that runs an inference

model to identify the plant. Amazon Alexa, a voice assistant,

processes captured voices locally and also transmits the voice

recordings to the cloud backend for further analysis and

storage [5]. However, remote inference in the context of edge

computing inevitably incurs privacy concerns, especially when

the inference data at the IoT edge is collected in the user’s

private space and time, such as voice recordings in households

[5]. The pictures for plant recognition may also be misused

by the curious cloud backend to infer the users’ locations

based on the background of the pictures. In particular, the

lack of privacy protection in remote inference may go against

the recent legislation such as the General Data Protection

Regulation in European Union.

Therefore, privacy preservation mechanisms are needed for

remote inference in edge computing. To this end, CryptoNets

[6] has been proposed to homomorphically encrypt the in-

ference data, perform inference based on the encrypted data,

and generate encrypted results. While CryptoNets provides a

strong protection of the confidentiality of the inference data,

it incurs significant compute overhead to the edge devices

[7]. Specifically, the homomorphic encryption of a 28 × 28
grayscale image takes about ten minutes on a Raspberry Pi 2

Model B single-board computer that has a 900MHz quad-core

ARM processor. Differently, in this paper, we aim to design

a lightweight data obfuscation approach suitable for resource-

constrained edge devices to protect inference data privacy in

the remote inference scheme, when the inference model at

the backend is a pre-trained deep neural network. With the

lightweight approach, the edge device spends little time and

energy to obfuscate the inference data before transmitting to

the backend. Moreover, we aim to achieve another feature

of unobtrusiveness, in that i) the inference model at the

backend admits both original and obfuscated inference data,

and ii) the edge device does not need to indicate whether

obfuscation is applied. The unobtrusiveness feature provides

three advantages. First, the system is back-compatible with

old edge devices that cannot be upgraded to perform the

data obfuscation. Second, the edge device can easily choose

to opt into or out of data obfuscation given its run-time

computation and battery lifetime statuses. Third, the exemption

of obfuscation indication helps improve privacy protection.

In this paper, we present ObfNet, an approach to realize

the lightweight and unobtrusive data obfuscation at the IoT

edge for remote inference. ObfNet is a small-scale neural

network that can run at resource-constrained edge devices and

introduces light compute overhead. ObfNet’s sophisticated,

many-to-one non-linear mapping from the input vector to the

output vector offers a form of data obfuscation that can well

protect the confidentiality of the raw forms of the input data.

To achieve unobtrusiveness, we design a training procedure

for ObfNet as follows. We assume that the backend has an

in-service deep inference model (referred to as InfNet). The

backend concatenates an untrained ObfNet with the InfNet

and then trains the concatenated model using the training

dataset that was used to train InfNet. During the training,

only the weights of ObfNet are updated by backpropagation

until convergence. The backend repeats the above procedure

to generate sets of distinct ObfNets and transmits a unique set

to each of the edge devices. Then, each edge device chooses

an ObfNet randomly and dynamically from the received set

and uses it for obfuscating the data for remote inference.

We evaluate the ObfNet approach by three case studies of

1) free spoken digit (FSD) recognition, 2) MNIST handwritten

digit recognition, and 3) American sign language (ASL) recog-

nition. The case studies show the effectiveness of ObfNet in

protecting the confidentiality of the raw forms of the inference

data while preserving the accuracy of the remote inference.

Specifically, the obfuscated samples are unrecognizable audi-

torily by invited volunteers for FSD and visually for MNIST

and ASL, while the obfuscation causes inference accuracy

drops of generally within 1% from the original inference

accuracy of about 99%. We also benchmark the ObfNet

approach on a testbed consisting of i) a Coral development

board equipped with Google’s edge tensor processing unit

(TPU) that acts as an edge device and ii) an NVIDIA Jetson

AGX Xavier equipped with a Volta graphics processing unit

(GPU) that acts as the backend. Measurements on the testbed

show that i) the energy expenditures of executing ObfNet at

the edge for the three case studies is at most 10mJ per sample,

ii) the per-sample ObfNet execution time on the edge device

is just a few milliseconds, and iii) remote inference in edge

computing is advantageous in terms of total processing times

and energy expenditures.

The reminder of this paper is organized as follows. Sec-

tion II reviews related work. Section III states the problem

and overviews our approach. Section IV presents performance

evaluation via three case studies. Section V presents bench-

mark results on the testbed. Section VI concludes this paper.

II. RELATED WORK

Edge computing is a new computing scheme that moves the

computation and storage from the centralized cloud servers to

the network edge nodes in the proximity of the end devices. It

is based on a hierarchical architecture of end devices, edge

nodes, and cloud servers. It brings two major advantages

compared with the cloud computing scheme [1]: First, the

physical proximity of the edge nodes to the end devices can

reduce the end-to-end latencies if the data processing can be

accomplished at the edge nodes. Second, if the cloud servers

need to be involved, the data pre-processing at edge devices

can reduce the communication network bandwidth usage. ML

technologies, which are considered effective analytic tools for

the massive data generated by the IoT end devices, have been

introduced to various edge computing applications. However,

there are privacy concerns when deploying ML technologies if

the applications involve privacy-sensitive data. The reference

[2] proposes a brief taxonomy of privacy-preserving inference

and training in the context of edge computing. However, it only

discusses the methods of noisification and secure computation.

In what follows, we provide a more extensive taxonomy on

privacy-preserving ML in edge computing.



3

Privacy-
preserving

ML in
edge

computing

Privacy-
preserving
inference

ObfNet

Partitioned
DNNs [22, 23]

CryptoNets [6]

Privacy-
preserving

training

Training data
encryption

[19–21]

Training data
obfuscation Multiplicative

projection
[7, 17, 18]

Additive
perturbation

[14–16]

Distributed
machine

learning [8–13]

Fig. 1. A taxonomy of privacy-preserving ML approaches.

As illustrated in Fig. 1, existing privacy-preserving mecha-

nisms that can be applied to the ML-equipped edge computing

are categorized into privacy-preserving training and privacy-

preserving inference approaches. The nodes in a privacy-

preserving ML system often have two roles of participant and

coordinator. When these privacy-preserving mechanisms are

applied in edge computing, usually the participants are the

edge nodes and the coordinator is the backend server.

In a privacy-preserving training process orchestrated by

the coordinator, the participants collaboratively train a global

model from their disjoint training datasets while the privacy

of the training datasets is preserved. This scheme is also

called edge training [2]. Distributed machine learning (DML)

[8–13] is a typical scheme of this category, in which only

model weights are exchanged among the nodes. However,

the local model training and the iterative weight exchanges

are compute- and communication-intensive. If the training

data samples are to be transmitted to the coordinator, they

can be obfuscated or encrypted for data privacy protection.

Obfuscation is often achieved via additive perturbation and

multiplicative projection. Additive perturbation implemented

via Laplacian [14], exponential [15], and median [16] mech-

anisms can provide differential privacy [24]. Multiplicative

projection [7, 17, 18] protects the confidentiality of the raw

forms of the original data. In [7, 17], the participants use dis-

tinct secret projection matrices, where the Euclidean distances

among the projected data samples are no longer preserved.

This can degrade the performance of distance-based ML

algorithms. To address this issue, in [17], the participants need

to project a number of public data vectors and return the

results to the coordinator that will learn a regress function

to preserve Euclidean distances. In [7], deep neural networks

(DNNs) are used to learn the sophisticated patterns of the

projected data from multiple participants. ML can be also

performed based on homomorphically encrypted data samples

[19–21, 25]. However, homomorphic encryption incurs high

compute overhead (millions times higher than multiplicative

projection [7]) and data swelling.

In privacy-preserving remote inference, the coordinator

has a pre-trained inference model; the participants transmit

unlabeled data samples to the coordinator for inference,

while the participants’ privacy in the inference data should

be preserved. The proposed ObfNet is a privacy-preserving

inference approach in the context of edge computing. We

now review the existing privacy-preserving remote inference

approaches including CryptoNets [6] and partitioned DNN

approaches [22, 23]. CryptoNets [6] adjusts the feed-forward

neural network trained with plaintext data such that it can

be applied to the homomorphically encrypted data to make

encrypted inference. It can be used as a privacy-preserving

remote inference approach in edge computing since the the

coordinator will run the inference model and the edge devices

encrypt the transmitted data for privacy protection. However,

the high compute overhead of homomorphic encryption ren-

ders CryptoNets unpractical for edge devices. Moreover, the

neural network of CrytoNets needs to use square polynomials

as the activation functions, which are rare for existing neural

networks that often adopt the sigmoid function or rectified

linear unit (ReLU).

In [22, 23], DNN partition approaches are proposed for

privacy-preserving remote inference. Specifically, a trained

DNN is split into two parts. The first part, which can be

considered a feature extractor, is executed by the participant,

while the second part (i.e., inference model) is executed by

the coordinator. For privacy protection, various alterations are

applied on the feature vector extracted by the participant,

which include dimension reduction and Siamese fine-tuning in

[22], and nullification and additive noisification for differential

privacy in [23]. The inference model is retrained using the

altered feature vectors of the training data samples. A major

limitation of the DNN partition approach [23] when it is

applied to edge computing is that the feature extractor at the

edge nodes needs to be unique. Thus, all edge nodes need

to use the same feature extractor. This renders the system

vulnerable to the collusion between any single edge node

and the curious backend server, because the backend may

reconstruct other edge nodes’ original inference data samples

once they obtain the feature vector alteration mechanism.

Moreover, the edge nodes cannot choose to opt out of the

privacy protection, whereas our ObfNet approach allows the

edge devices to choose to opt in or out freely. The feature

extractor in [22] consists of 11 to 13 convolutional layers,

which incur considerable compute overhead to edge devices.

From the above review, the training data obfuscation imple-

mented via additive perturbation or multiplicative projection is

a lightweight privacy-preserving edge training approach that

can be suitable for resource-constrained IoT edge and even end

devices. In contrast, lightweight privacy-preserving inference

has received limited research. In particular, as IoT applications

may prefer to use pre-trained deep InfNets, the development

of a lightweight privacy-preserving inference approach that

can adopt pre-trained InfNets is meaningful. Moreover, it

is desirable if the approach introduces privacy preservation

unobtrusively such that no modifications are needed for legacy

edge devices and backend that were designed with no privacy

preservation considerations. To achieve these goals, in this

paper, we design and present ObfNet.

Our prior work [26] mainly focused on reviewing existing

privacy-preserving machine learning schemes and discussing

the challenges of applying them to IoT. It also presented



4

the basic idea of ObfNet and preliminary results of applying

ObfNet to a case study of handwritten digit recognition [26].

Based on [26], we make the following new contributions in

this paper. First, we formally define the research problem

of lightweight and unobtrusive data obfuscation for remote

inference in edge computing. Second, we present two new case

studies of free-spoken digit recognition and American sign

language recognition. A more complete set of results on the

case study of handwritten digit recognition is also provided.

Third, Section V of this paper presents the implementation of

ObfNet on a hardware testbed and the evaluation result.

III. PROBLEM STATEMENT AND APPROACH OVERVIEW

In this section, we state the privacy preservation problem

in remote inference systems in the context of edge computing

(Section III-A) and then present the overview of the proposed

ObfNet approach (Section III-B).

A. Problem Statement

We consider a remote inference system in edge computing

that consists of multiple resource-constrained edge devices and

a resourceful backend. The backend can be a server program in

the cloud. The edge devices send the inference data samples

to the backend for inference. The backend executes a pre-

trained inference neural network (InfNet) using the inference

data samples. If the edge devices require the inference results,

the backend sends the results to the edge devices. This remote

inference scheme is advantageous if the heavyweight InfNet

causes too long execution time or is not feasible on the

resource-constrained edge devices.

Remote inference leads to privacy concerns if the inference

data samples are privacy-sensitive. In particular, the inference

data samples may contain private information beyond the

inference application. Therefore, in this paper, we aim to

protect the confidentiality of the raw form of each inference

data sample. The data form confidentiality is an immediate

and basic privacy requirement in many applications. In the

experiments conducted in this paper (cf. Section IV), we use

the human’s ability to interpret the protected inference data

samples as a measure of privacy preservation. The inference

results generated by the backend may also contain information

about the corresponding edge devices. However, in this paper,

we do not consider the privacy contained in the inference

results, since the edge devices should have no expectation of

it if they are willing to join the remote inference system.

Remote inference has two major privacy threats:

Honest-but-curious backend. The backend follows the pri-

vacy preservation mechanism described in Section III-B to

honestly serve the edge devices. It does not intend to tamper

with any data exchanged with the edge devices. However, the

backend is curious about the edge devices’ private information

contained in the inference data, since the backend may benefit

from the private information irrelevant to the objective of the

inference application. For example, the backend may misuse

the extracted private information for unauthorized purposes,

e.g., targeted advertisement and political advocacy [27].

Edge device i
(with obfuscation)

Edge device j
(no obfuscation)

Honest-but-curious backend

Data sample xi

ObfNet xi' = f(xi)

yi, yj ...

Pre-trained inference model InfNet

Data sample xj

Fig. 2. ObfNet for remote inference. The edge device i desires privacy
protection and thus applies ObfNet to obfuscate inference data sample xi

to x′

i. The edge device j does not desire privacy protection and thus directly
transmits the original inference data sample xj to the backend. The backend
feeds x′

i and xj to the pre-trained inference model InfNet to generate the
results yi and yj .

Potential collusion between edge devices and the backend.

We assume that the edge devices are not trustworthy in that

they may collude with the backend in finding out other edge

devices’ privacy contained in the inference data. The colluding

participants are also honest, i.e., they will faithfully transmit

their inference data with or without obfuscation. We aim to

maintain the privacy protection for an edge device when any

or all other edge devices are colluding with the backend.

B. Approach Overview

To address the privacy threats discussed in Section III-A,

in this paper, we propose an obfuscation neural network

(ObfNet) approach to obfuscate the inference data sample

before being transmitted to the backend. In particular, the

design of ObfNet aims to provide two properties of light

weight and unobtrusiveness as discussed in Section I.

ObfNet is a small-scale neural network executed on the edge

device to obfuscate the inference data samples. In our proposed

approach, the backend generates multiple sets of ObfNets by

following an approach detailed in the next paragraph and then

transmits a unique set to each of the edge devices. An edge

device that wishes to obfuscate the inference data chooses one

ObfNet from the received set and feeds the inference data

to the chosen ObfNet. Then, the edge device transmits the

output of the ObfNet, i.e., the obfuscated inference data, to

the backend for inference. The old edge devices that cannot be

upgraded to perform the data obfuscation and the edge devices

that do not wish to obfuscate the inference data can transmit

the original inference data to the backend for inference. The

backend executes the InfNet using the received inference data

and sends back the inference result to the edge device. Existing

cryptographic approaches can be applied to i) protect the

confidentiality and integrity of the data exchanged between

the edge devices and the backend and ii) the authentication of

the edge devices and the backend. Fig. 2 illustrates the remote

inference system where each edge device can choose to opt

into or out of the ObfNet-based privacy preservation.

Now, we present the approach to generating the sets of

ObfNets at the backend. Note that the ObfNets in any set

are distinct and all sets are also distinct (i.e., any two sets do

not share an identical ObfNet). Fig. 3 illustrates the approach.

It has two steps as follows.



5

Training phase

Training data Output...

Layer Layer
weights weights

...

Layer Layer
weights weights

The backend

The backendThe edge device

Inference phase

Inference
data

...

Layer Layer

weights weights

Output...

Layer Layer
weights weights

Fixed

ObfNet InfNet

Fig. 3. The procedure to generate ObfNets.

ObfNet design. The system designer designs a small-scale and

application-specific neural network architecture for ObfNet.

The input to ObfNet is the original inference data sample. The

output of ObfNet is the obfuscated inference data sample. Note

that there is no rule of thumb to design ObfNet’s architecture;

similar to the design of DNNs for specific applications, the

design of ObfNet also follows a trial-and-error approach

using the validation results of the training process as the

feedback (the training of ObfNet will be presented shortly).

The designer should try to reduce the scale of ObfNet to make

it affordable to resource-constrained edge devices. Moreover,

the ObfNet design should meet the following requirements.

First, to be unobtrusive, the dimensions of the input and output

should be identical. Second, ObfNet should adopt many-

to-one non-linear mapping activation functions (e.g., ReLU)

to prevent the backend from estimating the exact original

inference data from the obfuscated one.

ObfNet training. First, the backend initializes the weights

of an ObfNet with random numbers. Then, the backend

concatenates the ObfNet with the InfNet, forming a con-

catenated DNN, where the output of ObfNet is used as the

input to InfNet. The backend trains the concatenated DNN

using the training dataset that was previously used to train

InfNet. During the backpropagation stage of each training

epoch, the loss is backpropagated normally. However, only

the weights of ObfNet are updated, while the weights of

InfNet are fixed. When the training of the concatenated DNN

converges, the backend retrieves the trained ObfNet from the

concatenated DNN. By repeating the above procedure, the

backend generates multiple distinct sets of distinct ObfNets.

Note that due to the randomization of ObfNet’s initial weights

and the randomization techniques (e.g., training data sampling)

during the training phase, the trained ObfNets are distinct. The

backend can determine the cardinality of each set according to

the available storage volume of the corresponding edge device

that desires data obfuscation. Finally, the backend transmits the

set to the edge device.

We have a few remarks regarding the ObfNet approach.

First, since InfNet is not changed during the training of

ObfNet, the InfNet can classify both the original and the

obfuscated inference data samples. The execution of InfNet

does not require any indication of whether the input inference

data sample is obfuscated. Thus, the unobtrusive requirement

is achieved. Second, as the edge devices use distinct ObfNets

during remote inference, the collusion between any/all other

edge devices with the backend (i.e., the colluding edge devices

let the backend know which ObfNets they use) will not

affect the non-colluding edge devices. Third, as the ObfNet

uses many-to-one non-linear activation functions, it is highly

difficult (virtually impossible) for the backend to estimate

the exact original inference data sample from the obfuscated

one. Moreover, as each non-colluding edge device selects

an ObfNet from its received set randomly and dynamically

for obfuscation, the difficulty for the backend’s inverse at-

tempt is strengthened due to the introduced uncertainty. The

transmissions of the multiple ObfNets introduce a one-time

overhead. In Section V-B1, we will evaluate the amount of

such overhead.

IV. CASE STUDIES

In this section, we present the applications of ObfNet

to three case studies. For each case study, we present the

data preparation, architectures of the InfNet and the ObfNet,

evaluation concerning the impact of ObfNet on inference

accuracy, and assessment on the quality of obfuscation. The

InfNets and ObfNets are implemented using Python based on

the TensorFlow library. The source code of implementation

can be found from [28].

A. Case Study 1: Free Spoken Digit (FSD) Recognition

Our first case study concerns human voice recognition.

Recently, voice recognition has been integrated into various

edge systems such as smartphones and voice assistants found

in households and cars. In many scenarios, voice recordings

are privacy sensitive. Thus, it is desirable to obfuscate the

voice data for privacy protection, while preserving the per-

formance of voice recognition. In this section, we apply the

ObfNet approach to FSD recognition, which can be viewed

as a minimal voice recognition task. Using this minimal task

as a case study brings the advantage of easy exposition of the

results and the associated insights.

1) Data preparation: We use the FSD dataset [29] that

consists of 2,000 WAV recordings of spoken digits from 0 to

9 in English. We split the data as 80% for training, 10% for

validation, and 10% for testing. We extract the mel-frequency

cepstral coefficients (MFCC) as the features to represent a

segment of audio signal. MFCC is empirically shown to

well represent the pertinent aspects of the short-term speech

spectrum and form a particularly compact representation. As

the recordings are of different lengths, we apply constant

padding to unify the number of MFCC feature vectors for each

recording. As a result, the extracted MFCC feature vectors

over time for each recording form a 20 × 45 2-dimensional

image. Both the InfNet and the ObfNet take a 20× 45 image

as the input.

2) Architecture of InfNet: Multilayer perceptron (MLP) and

convolutional neural network (CNN) are two types of DNNs

widely adopted for speech recognition and image classifica-

tion. An MLP consists of multiple fully-connected layers (or

dense layers). Specifically, each neuron in any hidden layer

is connected to all the neurons in the previous layer. CNN



6

M
F

C
C

re
p

re
se

n
ta

ti
o

n

⇒
3

2
2×

2
co

n
v

fi
lt

er
s

4
8
3×

3
co

n
v

fi
lt

er
s

6
4
3×

6
co

n
v

fi
lt

er
s

m
ax

-p
o

o
li

n
g

(2
×
2

)

d
ro

p
o

u
t

(0
.2
5

)

⇒

1
2

8
n

eu
ro

n
s

d
ro

p
o

u
t

(0
.1

)

6
4

n
eu

ro
n

s

d
ro

p
o

u
t

(0
.2
5

)

1
0

n
eu

ro
n

s

so
ft

m
ax

⇒

cl
as

si
fi

ca
ti

o
n

re
su

lt

conv layers dense layers

Fig. 4. Structure of IC for FSD recognition.

M
F

C
C

re
p

re
se

n
ta

ti
o

n

⇒

8
0

0
n

eu
ro

n
s

d
ro

p
o

u
t

(0
.1
5

)

3
0

0
n

eu
ro

n
s

d
ro

p
o

u
t

(0
.1
5

)

1
2

8
n

eu
ro

n
s

d
ro

p
o

u
t

(0
.1

)

6
4

n
eu

ro
n

s

d
ro

p
o

u
t

(0
.2
5

)

1
0

n
eu

ro
n

s

so
ft

m
ax

⇒

cl
as

si
fi

ca
ti

o
n

re
su

lt

dense layers

Fig. 5. Structure of IM for FSD recognition.

incorporates the features of shared weights, local receptive

fields, and spatial subsampling to ensure shift invariance. In

this case study, we design MLP-based InfNet and CNN-based

InfNet, which are denoted by IM and IC , respectively. Their

details are as follows.

IC consists of three convolutional layers, one max-pooling

layer, and three dense layers. Zero padding is performed to

the input image in the convolutional layers and the max-

pooling layer. ReLU activation is applied to the output of every

convolutional and dense layer except for the last layer. ReLU

rectifies a negative input to zero. The last dense layer has

10 neurons with a softmax activation function corresponding

to the 10 classes of FSD. Three dropout layers with dropout

rate 0.25, 0.1 and 0.25 are applied after the max-pooling

layer and in the first two dense layers. Specifically, 25%,

10%, and 25% of the neurons will be abandoned randomly

from the neural network during the training process. Dropout

is an approach to regularization in neural networks which

helps reduce interdependent learning amongst the neurons. It

is widely leveraged during model training to avoid overfitting.

Fig. 4 shows the structure of IC . The IC has about 1.1 million

parameters in total.

IM has five dense layers. ReLU activation is applied to

the output of every hidden layer. The last dense layer has

10 neurons with a softmax activation function. To prevent

overfitting, four dropout layers are applied after the hidden

layers. Fig. 5 shows the structure of IM . The IM has about

one million parameters in total.

3) Architecture of ObfNet: Similar to InfNets, we design

CNN-based and MLP-based ObfNets, which are denoted by

OC and OM , respectively. Their details are as follows.

OC consists of two convolutional layers, one max-pooling

layer and one dense layer as the output layer. The first

convolutional layer filters the 20× 45 input image with three

output filters of kernel size 2 × 4. The second convolutional

layer applies five output filters with kernel size 3 × 6. All

convolutional filters use a stride of one pixel. Batch normal-

ization follows both convolutional layers, which is expected

to mitigate the problem of internal covariate shift to improve

model performance. A max-pooling layer with pool size of

90%

92%

94%

96%

98%

100%

1 2 3 4 5 6 7 8 9 10

T
es

t
ac

cu
ra

cy

Index of test

OC -IC
OM -IC

OC -IM
OM -IM

InfNet only

Fig. 6. Test accuracy of different ObfNet-InfNet concatenations in ten tests.

2 × 2 and stride of two is then used to reduce the data

dimensionality for computational efficiency. Zero padding is

added in each convolutional layer and the max-pooling layer,

to ensure that the filtered image has the same dimension as

the input image in each layer. The dense layer with 900

neurons is then connected after flattening the output of the

max-pooling layer. ReLU activation is applied to the output

of every convolutional and dense layer. This introduces many-

to-one mapping that is needed in our scheme as discussed in

Section III-B. Two dropout layers of with dropout rates of

0.25 and 0.15 are applied respectively after the max-pooling

layer and in the dense layer. In order to ensure that the output

of ObfNet has the same size as the input, a reshape layer is

applied in the end to reshape the output size to 20× 45. The

OC has about 0.65 million parameters.

OM has two dense layers as hidden layers. The first layer

has 200 neurons and is fully connected to the second layer

of 900 neurons. ReLU activation and batch normalization are

applied to the output of both layers. A reshape layer is used as

the output layer. The OM has about 0.37 million parameters.

4) Inference accuracy of InfNet and ObfNet-InfNet: Fol-

lowing the procedures described in Section III-B, we train IC

and IM using the training dataset and then train OC and OM

in the four concatenations of ObfNet and InfNet (i.e., OC -

IC , OM -IC , OC -IM , OM -IM ). During the training phase, we

adopt the AdaDelta optimizer [30], which introduces minimal

computation overhead over stochastic gradient descent (SGD)

and adapts the learning rate dynamically. Note that during the

training phase, only the model achieving the highest validation

accuracy is yielded as the training result.

The test accuracy of the trained InfNets IC and IM is

99.5%. Thus, the InfNets are well trained. The four ObfNet-

InfNet concatenations give distinct test accuracy. For each con-

catenation, we trained ten different ObfNets. Fig. 6 shows the

inference accuracy of applying ten different ObfNets before

the well-trained InfNet. The average test accuracy of applying

OC and OM before IC is 98.35% and 99.40%, respectively.

The average test accuracy of applying OC and OM before IM

is 98.55% and 99.10%, respectively. Compared with the test

accuracy of the IC and IM on the original data (i.e., 99.5%),

the test accuracy drops caused by the obfuscation are merely

1.15%, 0.10%, 0.95% and 0.40% for different combinations

of the ObfNet and the InfNet. Thus, the inference accuracy is

well preserved when ObfNet is employed.

5) Quality of obfuscation: To understand the quality of

obfuscation, we apply the MFCC inverse using a Python



7

package LibROSA to convert the MFCC representations back

to WAV audio. The audio converted from the original MFCC

representations can be easily recognized by human despite

some distortions. We also design an experiment to investigate

whether humans can interpret the audios inverted from the

outputs of ObfNet, i.e., the obfuscated MFCC representations.

The details and results of the experiment are as follows.

We invited ten student volunteers (five males and five fe-

males) aged from 21 to 23 from Xi’an Jiaotong-Liverpool Uni-

versity. All volunteers have good hearing. In the experiment,

we randomly selected ten original MFCC representations from

the test dataset (one for each class of the FSD dataset). Then,

we applied the MFCC inverse using LibROSA to convert the

ten MFCC representations back to audio. The four different

ObfNets (two OCs and two OM s) used in our evaluation were

applied to obfuscate the two selected MFCC representations.

The obfuscated MFCC representations were inverted using

LibROSA to audios. Therefore, in total, there were 50 audio

files: ten for the original MFCC representations and 40 for

the obfuscated MFCC representations. All volunteers sat in

a classroom. The 10 audio files inverted from the original

MFCC representations were firstly played in the classroom

in a shuffled order. All volunteers can correctly recognize the

FSDs. Then, the 40 audio files inverted from the obfuscated

MFCC representations were played in a shuffled order. Every

volunteer was required to write down the FSD label (from 0

to 9) that they perceived.

Fig. 7 shows the confusion matrix for the ten volunteers to

recognize the audios inverted from the MFCC representations

obfuscated by ObfNet OC that is trained for InfNet IC . Each

row shows the distribution of the ten volunteers’ answers for

an audio with a certain true label. The last column shows the

accuracy for the audio. From the figure, we can see that the

volunteers’ answers are distributed over all labels without any

consensus. This suggests that the volunteers cannot perceive

useful information from the audio in recognizing the FSD.

The confusion matrices for the other three ObfNets can be

found in Appendix A. The overall accuracy, which is defined

as the number of correct answers divided by a total of 100

answers (10 volunteers × 10 audios), is 5%, 7%, 7%, 4% for

the four ObfNets, respectively. Thus, the volunteers’ answers

seem to be random guesses with an expected accuracy of

10%. Therefore, the ObfNets achieve satisfactory obfuscation

quality. Interested readers can download the obfuscated audio

samples from an online repository [31] and then examine them.

B. Case Study 2: Handwritten Digit (MNIST) Recognition

The MNIST dataset of handwritten digits [32] has been

widely adopted in ML literature. In this section, we apply

our ObfNet approach to MNIST. Due to the simplicity of the

image samples in MNIST, the quality of the obfuscation can

be readily assessed by visual inspection.

1) Data preparation: The MNIST dataset consists of

70,000 handwritten digit images with ten classes correspond-

ing to the digits from 0 to 9, as shown in Fig. 11(a). Each

image has a single channel (i.e., grayscale image). We resize

each image to 28× 28.

Perceived label

0 1 2 3 4 5 6 7 8 9 Accuracy

T
ru

e
la

b
el

0 1 1 1 1 1 1 1 2 1 0%
1 1 1 1 2 2 1 1 1 0%
2 1 1 1 2 1 2 1 1 10%
3 2 1 1 1 1 2 1 1 10%
4 1 1 1 2 1 1 2 1 10%
5 1 1 1 1 1 3 2 0%
6 1 1 2 3 1 1 1 0%
7 2 2 2 1 1 1 1 10%
8 2 1 1 2 1 1 1 1 10%
9 1 1 1 1 1 2 1 2 0%

Overall accuracy = 5%

Fig. 7. Confusion matrix for recognizing the audio inverted from the MFCC
representations obfuscated by ObfNet OC that is trained for InfNet IC . The
matrix omits the zeros.

D
ig

it
Im

ag
e

⇒

3
2
3×

3
co

n
v

fi
lt

er
s

6
4
3×

3
co

n
v

fi
lt

er
s

m
ax

-p
o

o
li

n
g

(2
×
2

)

d
ro

p
o

u
t

(0
.2
5

)

⇒

1
2

8
n

eu
ro

n
s

d
ro

p
o

u
t

(0
.5

)

1
0

n
eu

ro
n

s

so
ft

m
ax

⇒

cl
as

si
fi

ca
ti

o
n

re
su

lt

conv layers dense layers

Fig. 8. Structure of IC for MNIST recognition.

2) Architecture of InfNet: We adopt two InfNets: a CNN-

based IC and an MLP-based IM . Their details are as follows.

IC is similar to LeNet [32]. It consists of five layers: two

convolutional layers, a pooling layer, and two dense layers

with ReLU activation. Fig. 8 shows the architecture. The

IC has about 1.2 million parameters in total. IM has four

dense layers as illustrated in Fig. 9. It has about 0.93 million

parameters in total.

3) Architecture of ObfNet: An MLP-based ObfNet OM and

a CNN-based ObfNet OC are adopted. Details are as follows.

OM has two dense layers with ReLU activation. This two-

layer design helps reduce the scale of ObfNet. Specifically,

to be unobtrusive, ObfNet’s output must have the same size

as its input.For input size of 28 × 28 = 784, a single-layer

MLP with bias has 784× 784+ 784 = 615440 parameters. In

contrast, a two-layer MLP with 16 neurons within each layer

has 784 × 16 + 16 + 16 × 784 + 784 = 25888 parameters

only, which is 23.8 times smaller than the single-layer MLP.

We configure the number of neurons for the first hidden layer

to be 8, 16, 32, 64, or 128. We will investigate the impact

of ObfNet’s scale on the accuracy of InfNet. The amounts of

parameters corresponding to the above configurations are from

0.013 to 0.804 million.

OC has a convolutional layer, a pooling layer, a dropout

layer, and two dense layers with ReLU activation. The convo-

lutional layer filters the 28 × 28 input image with 32 output

filters of kernel size 3 × 3 and uses stride of one pixel. The

max-pooling layer with pool size of 2 × 2 and stride of two

follows to reduce spatial dimensions. wo dense layers are then

connected with ReLU activation.

4) Inference accuracy of InfNet and ObfNet-InfNet: The

test accuracies of the trained InfNets IC and IM are 99.35%



8

D
ig

it
Im

ag
e

⇒

5
1

2
n

eu
ro

n
s

5
1

2
n

eu
ro

n
s

5
1

2
n

eu
ro

n
s

1
0

n
eu

ro
n

s

so
ft

m
ax

⇒

cl
as

si
fi

ca
ti

o
n

re
su

lt

dense layers

Fig. 9. Structure of IM for MNIST recognition.

90%

92%

94%

96%

98%

100%

8 16 32 64 128 256 512

T
es

t
ac

cu
ra

cy

Number of neurons at first hidden layer

OC -IC OM -IC InfNet only

(a) Test accuracy of InfNet IC and two ObfNet-InfNet concatenations

90%

92%

94%

96%

98%

100%

8 16 32 64 128 256 512

T
es

t
ac

cu
ra

cy

Number of neurons at first hidden layer

OC -IM OM -IM InfNet only

(b) Test accuracy of InfNet IM and two ObfNet-InfNet concatenations

Fig. 10. Test accuracy of InfNets and ObfNet-InfNet concatenations for
MNIST recognition.

and 98.47%, respectively. This suggests that the InfNets are

well trained. As discussed in Section IV-B3, we vary the

number of neurons of the first hidden layer of the ObfNets

and train the ObfNets following the procedure presented in

Section III-B. Fig. 10 shows the test accuracy of various

concatenations of ObfNets and InfNets when the number

of neurons in the first hidden layer of the ObfNet varies.

From Fig. 10(a), compared with the test accuracy of IC , the

concatenation OM -IC has test accuracy drops ranging from

0.46% to 1.43% over various neuron number settings. When

the InfNet IM is adopted, more neurons in the first hidden

layer of ObfNet result in higher test accuracy of the ObfNet-

InfNet concatenation, as shown in Fig. 10(b). In particular,

some ObfNet-InfNet concatenations even outperform the cor-

responding InfNet. This is possible because the ObfNet-InfNet

concatenations are deeper neural networks compared with the

corresponding InfNet.

5) Quality of obfuscation: Fig. 11 shows the obfuscation

results of OM when the number of neurons in the first

hidden layer varies. From the figure, we cannot interpret

the obfuscation results into any digits. When the number of

neurons is few (e.g., 8 to 32), the obfuscation results of the

digit one are darker than the obfuscation results of other digits.

This is because the values of the pixels in the original inference

data of digit one are zero, leading to lower pixel values in the

obfuscation results. However, when more neurons are used in

the first hidden layer of OM , the overall darkness levels of

(a) Original inference data

(b) Obfuscation results of OM with 8 neurons in the first hidden layer

(c) Obfuscation results of OM with 16 neurons in the first hidden layer

(d) Obfuscation results of OM with 32 neurons in the first hidden layer

(e) Obfuscation results of OM with 64 neurons in the first hidden layer

(f) Obfuscation results of OM with 128 neurons in the first hidden layer

(g) Obfuscation results of OM with 256 neurons in the first hidden layer

(h) Obfuscation results of OM with 512 neurons in the first hidden layer

Fig. 11. Obfuscation results of ObfNet OM on MNIST.

the obfuscation results of all digits are equalized, suggesting a

better obfuscation quality. The obfuscation results of OC can

be found in Appendix B. Similarly, we cannot interpret the

obfuscation results.

C. Case Study 3: American Sign Language (ASL) Recognition

In this case study, we consider an application of ASL

recognition using camera-captured pictures. ASL is a set of

29 hand gestures corresponding to 26 English letters and three

other special characters representing the meanings of deletion,

nothing, and space delimiter. While ASL is a predominant sign

language of the deaf communities in the U.S., it is also widely

learned as a second language, serving as a lingua franca.

Therefore, portable ASL recognition systems [33] are useful

to the communications between ASL users and those who do

not understand ASL. Porting the ASL recognition capability

to smart glasses is desirable but also challenging due to smart

glasses’ limited compute power. Thus, remote inference is a

solution for smart glass-based ASL recognition. As the hand

gesture images caused by the embedded cameras can contain

privacy-sensitive information (e.g., skin color, skin texture,

gender, tattoo, location of the shot inferred from the picture

background, etc), it is desirable to obfuscate the images. Thus,

we apply ObfNet to ASL recognition.



9

A
S

L
Im

ag
e

⇒

3
2
2×

2
co

n
v

fi
lt

er
s

4
8
3×

3
co

n
v

fi
lt

er
s

1
2

8
3×

6
co

n
v

fi
lt

er
s

m
ax

-p
o

o
li

n
g

(2
×
2

)

d
ro

p
o

u
t

(0
.2
5

)

⇒

1
0

2
4

n
eu

ro
n

s

1
0

2
4

n
eu

ro
n

s

d
ro

p
o

u
t

(0
.5

)

2
9

n
eu

ro
n

s

so
ft

m
ax

⇒

cl
as

si
fi

ca
ti

o
n

re
su

lt

conv layers dense layers

Fig. 12. Structure of IC for ASL dataset.

1) Data preparation: We use an ASL dataset [34] consist-

ing of 87,000 static hand gesture RGB images with each sized

200× 200 pixels. ig. 14(a) shows the samples corresponding

to the 29 classes of the ASL alphabet. To reduce the scale of

ObfNet, we down-sample the ASL images to 64× 64.

2) Architecture of InfNet: As ASL hand gestures have more

complex patterns than the MNIST handwritten digits, we adopt

a CNN-based InfNet IC Note that compared with MLP, CNN

often better deals with multi-dimensional spatial data. The

IC consists of three convolutional layers with 32, 64, 128

channels, a max-pooling layer, and three dense layers. We

adopt adopt after the pooling layer and the second dense layer

with drop rates of 0.25 and 0.5. Fig. 12 shows the architecture

of IC . The IC has about 111 million parameters in total.

3) Architecture of ObfNet: We evaluate both the MLP-

based ObfNet OM and the CNN-based ObfNet OC .

OM has two dense layers with ReLU activation. We vary

the number of neurons in the first dense layer and evaluate

how it affects the inference accuracy. OM has about 6.3 to

25.2 million parameters, depending on the number of neurons

in the first dense layer.

OC consists of a convolutional layer, a pooling layer, two

dense layers with ReLU activation. The convolutional layer

filters the 64× 64× 3 input image (i.e., 64× 64 RGB image)

with 32 output filters of kernel size 3 × 3 and uses stride of

one pixel. A max-pooling layer with pool size of 2 × 2 and

stride of two pixels follows to reduce spatial dimensions. Two

dense layers are then connected with ReLU activation. Two

dropout layers with dropout rates of 0.25 and 0.4 are applied

after the max-pooling layer and the second dense layer to

prevent overfitting. OC has about 22 to 44 million parameters,

depending on the number of neurons in the first dense layer.

4) Inference accuracy of InfNet and ObfNet-InfNet: The

test accuracy of the trained IC is 99.82%. This suggests that

the InfNet is well trained. Multiple ObfNets are trained by

following the procedure presented in Section III-B.

Fig. 13 shows the test accuracy of various concatenations of

ObfNets and InfNets when the number of neurons in the first

hidden layer of the ObfNet varies. From Fig. 13, compared

with the test accuracy of IC , the concatenation OM -IC has

test accuracy drops ranging from 0.12% to 2.81% over various

neuron number settings. When the ObfNet OC is adopted, the

concatenation OC -IC has test accuracy drops ranging from

1.52% to 2.35%. When the number of neurons in the first

hidden layer increases from 512 to 1024, the test accuracy of

the OM -IC drops. This can be caused by overfitting, because

compared with the large number of OM ’s parameters, the

number of training samples is not large. Nevertheless, with

90%

92%

94%

96%

98%

100%

256 512 1024

T
es

t
ac

cu
ra

cy

Number of neurons at first hidden layer

OC -IC OM -IC InfNet only

Fig. 13. Test accuracy of InfNet and ObfNet-InfNet concatenations for ASL
recognition.

(a) Original inference data

(b) Obfusaction results of OM

(c) Obfusaction results of OC

Fig. 14. Obfuscation results of ObfNet on ASL.

proper configuration of the ObfNet, the smallest test accuracy

drop we can achieve is 0.12%. This shows that the ObfNet

introduces little test accuracy drop for ASL recognition.

5) Quality of obfuscation: Fig. 14 shows the visual effect

of the obfuscation on the ASL samples. From Fig. 14(b) and

Fig. 14(c), we cannot interpret the obfuscation results of OM

and OC into any hand gestures. Note that the obfuscated

samples are still RGB images. Interestingly, the obfuscation

results by a certain ObfNet exhibit similar patterns. For

instance, each obfuscated sample in Fig. 14(b) has a dark hole

in the center and a greenish circular belt around the dark hole.

In fact, as the ObfNet has a large number of parameters (up

to tens of million), the pattern shown in the obfuscation result

is mainly determined by the ObfNet, whereas the original

inference data sample with a relatively limited amount of

information (64 × 64 × 3 = 12288 pixel values only) can

be viewed as a perturbation.

V. IMPLEMENTATION AND BENCHMARK

This section presents the implementation of our ObfNet ap-

proach on edge/backend hardware platforms. The benchmark



10

TABLE I
PER-SAMPLE EXECUTION TIME ON CORAL FOR OM TRAINED FOR IC .

Case study
ObfNet execution time (ms)

Minimum Average Maximum

FSD-OM 2.226 2.312 2.253

MNIST-OM 0.221 0.221 0.224

ASL-OM 11.136 11.146 11.170

TABLE II
PER-SAMPLE EXECUTION TIME ON JETSON FOR IC .

Case study
InfNet execution time (ms)

Minimum Average Maximum

FSD-IC 0.229 0.246 0.289

MNIST-IC 0.158 0.174 0.212

ASL-IC 0.201 0.219 0.249

results on the hardware platforms give understanding on the

feasibility of ObfNet in practice and interesting observations.

For conciseness of presentation, we only present the results of

OM trained for IC in the three case studies.

A. Hardware Platforms

Our implementation uses the Coral development board

[35] (referred to as Coral) and NVIDIA Jetson AGX Xavier

[36] (referred to as Jetson) as the edge device and backend

hardware platforms, respectively. We implement the ObfNets

and InfNets of the three case study applications presented in

Section IV on Coral and Jetson, respectively.

Coral is a single-board computer equipped with an NXP

iMX8M system-on-chip and a Google Edge TPU. Edge TPU

is an inference accelerator that cannot perform ML model

training. Coral sizes 8.8× 6 cm2 and weighs about 136 grams

including a thermal transfer plate and a heat dissipation fan.

The power consumption of Coral is no great than 8.5W.

Thus, Coral is a modern edge device platform with hardware-

accelerated inference capability. Note that owing to ObfNets’

small-scale design, they can also run on edge devices without

hardware acceleration for inference. Coral runs Mendel, a

lightweight GNU/Linux distribution. We deploy the ObfNet

implemented using the TensorFlow Lite library on Coral.

Jetson is a computing board equipped with a 8-core ARM

CPU, 16GB LPDDR4x memory, and a 512-core Volta GPU.

The GPU can accelerate DNN training and inference. Jetson

sizes 10.5 × 10.5 cm2 and weighs 280 grams including a

thermal transfer plate. Jetson’s power rating can be configured

as 10W, 15W, and 30W. In our experiments, we configure it

to run at 30W to achieve the highest compute power. Jetson

can be employed as an embedded backend to serve edge

devices of applications in a locality such as an office building

and a factory floor. To support massive edge devices, a cloud

backend can be used instead. Jetson runs Ubuntu. We deploy

the InfNet implemented using TensorFlow on Jetson.

B. Benchmark Results

For each case study application, we measure the per-sample

execution time for obfuscation on Coral and per-sample infer-

ence time on Jetson. To mitigate the uncertainties caused by

TABLE III
PER-SAMPLE EXECUTION TIME OF IC ON CORAL.

Model
Inference time (ms)

Minimum Average Maximum

FSD-IC 13.484 14.318 15.137

MNIST-IC 7.606 8.351 9.095

ASL-IC 100.433 100.467 100.510

the operating systems’ scheduling, for each tested setting, we

run ObfNet or InfNet for 100 times.

1) Model communication overhead: As multiple ObfNets

are transmitted to the edge node for selecting, additional com-

munication overhead is introduced. This set of measurements

evaluate such communication overhead. In our implementa-

tion, the ObfNets are transmitted in the form of TensorFlow

Lite FlatBuffer file (.tflite). Thus, the model communication

cost can be measured by the multiplication of the number

of ObfNets transmitted and the size of TensorFlow Lite

FlatBuffer file of a single ObfNet. For FSD, MNIST, and ASL,

a single ObfNet is 1.4 MB, 618 KB, and 1.1 MB, respectively.

If a communication link throughput of 10Mbps is available,

the communication of one ObfNet requires 1.12, 0.49, and

0.88 seconds for FSD, MNIST, and ASL, respectively.

2) ObfNet and InfNet execution times and energy expendi-

tures: We assess the energy expenditures of executing ObfNet

and InfNet as the corresponding execution times multiplied

by the rated power of Coral and Jetson as mentioned in

Section V-A. Table I shows Coral’s per-sample execution times

for the ObfNets designed for the three case studies when the

batch size is 32. We can see that, the ObfNets need little

processing time (i.e., a few milliseconds) on Coral. Based on

the average execution time per sample, the average energy

expenditures of executing ObfNet on Coral are 20mJ, 2mJ,

and 9.5mJ for FSD, MNIST, and ASL, respectively Table II

shows Jetson’s per-sample execution time for the InfNets

designed for the three case studies when the batch size is 32.

Although the InfNets have larger scales than the ObfNets, the

execution times of InfNets are shorter than those of ObfNets

due to Jetson’s greater compute power. In TensorFlow, batch

execution of inferences can improve the efficiency of utilizing

the hardware acceleration. Thus, we also evaluate the impact

of the batch size on the per-sample execution time of InfNets.

Fig. 15 shows the results. We can see that the per-sample

execution time decreases with the batch size and converges.

The convergence is caused by the saturation of the hardware

acceleration utilization. When the batch size is 32, the average

energy expenditures of executing InfNet on Jetson are 7mJ,

5mJ, and 7mJ for FSD, MNIST, and ASL, respectively. From

Fig. 15, when the batch size increases, the energy expenditures

of executing InfNet on Jetson can be further reduced. The

above results show that the ObfNets and InfNets introduce

little overhead to the edge device and the backend for the

considered case study applications.

3) Advantage of remote inference: Inference accelerators

such as Edge TPU may enable the execution of deep InfNets

on edge devices (i.e., local inference). In contrast, the remote

inference scheme considered in this paper involves the trans-

missions of the inference data to the backend, which may incur



11

0

0.1

0.2

0.3

0.4

16 32 64 128 256 5121024

In
fe

re
n
ce

ti
m

e
(m

s)

(p
er

sa
m

p
le

)

Batch size

(a) FSD-IC

0

0.1

0.2

0.3

16 32 64 128 256 5121024

In
fe

re
n
ce

ti
m

e
(m

s)

(p
er

sa
m

p
le

)

Batch size

(b) MNIST-IC

0

0.1

0.2

0.3

0.4

0.5

16 32 64 128 256 5121024

In
fe

re
n
ce

ti
m

e
(m

s)

(p
er

sa
m

p
le

)

Batch size

(c) ASL-IC

Fig. 15. InfNet’s per-sample execution time on Jetson versus batch size. Error bar represents average, maximum
and minimum over 100 tests.

0

5

10

15

20

25

30

35

5 10 15 20

S
am

p
le

T
x

ti
m

e
(m

s)

Connection data rate (Mbps)

MNIST

ASL

FSD

Fig. 16. Data sample transmis-
sion time versus network con-
nection data rate.

increased latency. In this set of benchmark experiments, we put

aside the need of protecting the confidentiality of InfNets as

discussed in Section I and compare the local inference and

remote inference in terms of total time delay.

Table III shows the execution time of InfNets on Coral.

Compared with the results in Table II, for the FSD and

MNIST case study applications, the execution times on Coral

are about 50x longer than those on Jetson. For ASL, it is

about 480x longer. Regarding energy expenditures, although

Jetson consumes 3.5 times more power than Coral, executing

InfNet on it is still more power-efficient due to the much

shorter execution times. The data transmission delays under

the remote inference scheme are often small, because edge

devices often have wideband network connections (e.g., Wi-Fi

and 4G). Based on the average inference data sample sizes of

the case study applications (i.e., 10KB, 13KB, and 0.6KB for

FSD, ASL, and MNIST, respectively), Fig. 16 shows the per-

sample transmission times versus the network connection data

rate. Analysis shows that, compared with the local inference,

the remote inference achieves shorter time delays when the

connection data rate is higher than 15Mbps. Note that 4G

connections normally provide more than 100Mbps data rate.

Thus, remote inference will be more advantageous in terms of

total time delay and power efficiency.

VI. CONCLUSION AND FUTURE WORK

The case studies presented in this paper show that there

can exist a small-scale non-linear transform in the form of a

neural network, i.e., ObfNet O(·), such that the transformed

inference data samples are mapped to the same class labels

as the original inference data samples, where the mapping

is the InfNet I(·). Formally, ∃O(·), I(O(x)) = I(x) holds

mostly, ∀x ∈ X , where X represents the inference dataset.

The evaluation also shows that the ObfNet can well protect

the confidentiality of the raw form of the inference data

sample x, through the volunteers’ auditory examination on

the obfuscated FSD samples and the visual examination on

the obfuscated MNIST and ASL samples. Therefore, this

paper presents a lightweight and unobtrusive data obfuscation

approach for inference, which can be used to protect the edge

devices’ data privacy in the remote inference systems.

In our future work, we aim to apply the ObfNet approach for

a number of heavyweight InfNets that deal with more complex

auditory and visual sensing tasks such as full-fledged speech

recognition and DNNs for ImageNet.

REFERENCES

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE IoT Journal, vol. 3, no. 5, pp. 637–646, 2016.

[2] J. Chen and X. Ran, “Deep learning with edge computing: A review,”
Proceedings of the IEEE, vol. 107, no. 8, pp. 1655–1674, 2019.

[3] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[4] “Picturethis,” https://www.picturethisai.com/, accessed: 2019-12-10.
[5] “Thousands of amazon workers listen to alexa users’ conversations,”

https://bit.ly/3aa3EzQ, accessed: 2019-12-10.

[6] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” in ICML, 2016, pp. 201–210.

[7] L. Jiang, R. Tan, X. Lou, and G. Lin, “On lightweight privacy-preserving
collaborative learning for internet-of-things objects,” in IoTDI, 2019.

[8] J. Hamm, A. C. Champion, G. Chen, M. Belkin, and D. Xuan, “Crowd-
ml: A privacy-preserving learning framework for a crowd of smart
devices,” in ICDCS. IEEE, 2015, pp. 11–20.

[9] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in CCS.
ACM, 2015, pp. 1310–1321.

[10] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” arXiv preprint arXiv:1602.05629, 2016.

[11] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior,
P. Tucker, K. Yang, Q. V. Le, and M. Ranzato, “Large scale distributed
deep networks,” in NIPS, 2012, pp. 1223–1231.

[12] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola, “Parallelized
stochastic gradient descent,” in NIPS, 2010, pp. 2595–2603.

[13] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine learning, vol. 3,
no. 1, pp. 1–122, 2011.

[14] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to
sensitivity in private data analysis,” in TCC. Springer, 2006.

[15] F. McSherry and K. Talwar, “Mechanism design via differential privacy.”
in FOCS, vol. 7, 2007, pp. 94–103.

[16] A. Roth and T. Roughgarden, “Interactive privacy via the median
mechanism,” in STOC. ACM, 2010, pp. 765–774.

[17] B. Liu, Y. Jiang, F. Sha, and R. Govindan, “Cloud-enabled privacy-
preserving collaborative learning for mobile sensing,” in SenSys, 2012.

[18] Y. Shen, C. Luo, D. Yin, H. Wen, R. Daniela, and W. Hu, “Privacy-
preserving sparse representation classification in cloud-enabled mobile
applications,” Computer Networks, vol. 133, pp. 59–72, 2018.

[19] T. Graepel, K. Lauter, and M. Naehrig, “Ml confidential: Machine
learning on encrypted data,” in ICISC. Springer, 2012, pp. 1–21.

[20] J. Z. Zhan, L. Chang, and S. Matwin, “Privacy preserving k-nearest
neighbor classification.” Intl. J. Netw. Security, vol. 1, no. 1, 2005.

[21] Y. Qi and M. J. Atallah, “Efficient privacy-preserving k-nearest neighbor
search,” in ICDCS. IEEE, 2008, pp. 311–319.

[22] S. A. Osia, A. S. Shamsabadi, A. Taheri, K. Katevas, S. Sajadmanesh,
H. R. Rabiee, N. D. Lane, and H. Haddadi, “A hybrid deep learning
architecture for privacy-preserving mobile analytics,” arXiv preprint

arXiv:1703.02952, 2017.
[23] J. Wang, J. Zhang, W. Bao, X. Zhu, B. Cao, and P. S. Yu, “Not

just privacy: Improving performance of private deep learning in mobile
cloud,” in KDD. ACM, 2018, pp. 2407–2416.

[24] C. Dwork, “Differential privacy,” Encyclopedia of Cryptography and

Security, pp. 338–340, 2011.
[25] R. A. DeMillo, “Foundations of secure computation,” Georgia Institute

of Technology, Tech. Rep., 1978.
[26] M. Zheng, D. Xu, L. Jiang, C. Gu, R. Tan, and P. Cheng, “Challenges of

privacy-preserving machine learning in iot,” in AIChallengeIoT, 2019.

https://www.picturethisai.com/
https://bit.ly/3aa3EzQ


12

[27] “Facebook-cambridge analytica data scandal,” https://bit.ly/2vng34J.
[28] https://github.com/ntu-aiot/ObfNet .
[29] “Free spoken digit dataset,” https://zenodo.org/record/1342401.
[30] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv

preprint arXiv:1212.5701, 2012.
[31] https://github.com/ntu-aiot/ObfNet-showcase.
[32] http://yann.lecun.com/exdb/mnist/ .
[33] B. Fang, J. Co, and M. Zhang, “Deepasl: Enabling ubiquitous and non-

intrusive word and sentence-level sign language translation,” in SenSys.
ACM, 2017, p. 5.

[34] https://www.kaggle.com/grassknoted/asl-alphabet.
[35] https://coral.ai/products/dev-board/.
[36] https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit.

APPENDIX

A. Confusion Matrices for Other Three ObfNets in FSD

Recognition

Fig. 17, Fig. 18, and Fig. 19 show the confusion matrices for

recognizing the audio inverted from the MFCC representations

obfuscated by OC trained for IM , OM trained for IC , and OM

trained for IM , respectively.

Perceived label

0 1 2 3 4 5 6 7 8 9 Accuracy

T
ru

e
la

b
el

0 1 2 2 1 1 1 2 0%
1 1 1 2 2 1 1 1 1 0%
2 1 1 2 2 1 2 1 20%
3 3 1 1 1 2 1 1 0%
4 1 1 1 2 1 1 2 1 20%
5 1 2 2 1 1 1 1 1 10%
6 1 1 2 2 1 1 1 1 0%
7 1 1 1 1 1 3 1 1 10%
8 1 1 2 1 2 1 1 10%
9 1 1 2 1 2 1 1 1 10%

Overall accuracy = 7%

Fig. 17. Confusion matrix for recognizing the audio inverted from the MFCC
representations obfuscated by ObfNet OC that is trained for InfNet IM . The
matrix omits the zeros.

Perceived label

0 1 2 3 4 5 6 7 8 9 Accuracy
T

ru
e

la
b

el

0 1 1 2 1 1 1 1 2 0%
1 1 1 2 1 1 1 2 1 10%
2 1 1 2 1 1 1 1 2 0%
3 1 3 2 2 1 1 10%
4 1 2 2 1 1 1 1 1 10%
5 1 1 0 1 1 3 1 2 10%
6 1 3 1 1 2 1 1 10%
7 4 1 1 1 2 1 20%
8 2 2 1 1 1 2 1 0%
9 1 3 1 1 1 2 1 0%

Overall average = 7%

Fig. 18. Confusion matrix for recognizing the audio inverted from the MFCC
representations obfuscated by ObfNet OM that is trained for InfNet IC . The
matrix omits the zeros.

Perceived label

0 1 2 3 4 5 6 7 8 9 Accuracy

T
ru

e
la

b
el

0 1 1 3 1 1 2 1 10%
1 1 3 1 1 2 1 1 10%
2 2 1 1 1 1 2 1 1 10%
3 1 2 1 2 1 1 2 0%
4 2 1 1 1 1 2 1 1 0%
5 0 1 2 3 2 1 1 0%
6 1 1 3 1 1 2 1 0%
7 1 1 2 1 1 2 1 1 10%
8 1 3 3 1 3 2 1 0%
9 2 2 1 1 2 1 1 0%

Overall accuracy = 4%

Fig. 19. Confusion matrix for recognizing the audio inverted from the MFCC
representations obfuscated by ObfNet OM that is trained for InfNet IM . The
matrix omits the zeros.

https://bit.ly/2vng34J
https://github.com/ntu-aiot/ObfNet
https://github.com/ntu-aiot/ObfNet-showcase
http://yann. lecun. com/exdb/mnist/
https://www.kaggle.com/grassknoted/asl-alphabet
https://coral.ai/products/dev-board/
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit


13

B. Obfuscation Results of ObfNet OC on MNIST

Fig. 20 shows the obfuscation results of OC on MNIST.

(a) Original inference data

(b) Obfusaction results of OC with 8 neurons in the first dense layer

(c) Obfusaction results of OC with 16 neurons in the first dense layer

(d) bfusaction results of OC with 32 neurons in the first dense layer

(e) Obfusaction results of OC with 64 neurons in the first dense layer

(f) Obfusaction results of OC with 128 neurons in the first dense layer

(g) Obfusaction results of OC with 256 neurons in the first dense layer

(h) Obfusaction results of OC with 512 neurons in the first dense layer

Fig. 20. Obfuscation results of ObfNet OC on MNIST.

Dixing Xu is a fourth-year Information and
Computer Science undergraduate student at Xi’an
Jiaotong-Liverpool University (XJTLU), China. He
is currently a visiting student researcher at Zhe-
jiang University (ZJU), China. Previously, he was
a research assist at School of Computer Science
and Engineering (SCSE), Nanyang Technological
University (NTU), Singapore. His research interests
include machine learning system and Internet of
Things (IoT).

Mengyao Zheng is an undergraduate student (Year
3 student) at XJTLU, studying in Financial Mathe-
matics. Previously, Mengyao was visiting SCSE of
NTU. During this period, she worked with Prof. Rui
Tan on privacy-preserving machine learning in IoT.

Linshan Jiang is a Ph.D. candidate at SCSE of
NTU. He received his bachelor degree in Com-
munication Engineering from Southern University
of Science and Technology, China, in 2016. His
research interests include secure and privacy in AIoT
system, non-functional requirements of IoT.

Chaojie Gu is a Ph.D. candidate at SCSE of NTU.
He received his B.Eng. degree from Harbin Institute
of Technology, China, in 2016. His research interests
include IoT and Low-Power Wide Area Networks.

Rui Tan (M’08-SM’18) is an Assistant Professor
at SCSE of NTU. Previously, he was a Research
Scientist (2012-2015) and a Senior Research Sci-
entist (2015) at Advanced Digital Sciences Center,
a Singapore-based research center of University of
Illinois at Urbana-Champaign (UIUC), a Principle
Research Affiliate (2012-2015) at Coordinated Sci-
ence Lab of UIUC, and a postdoctoral Research
Associate (2010-2012) at Michigan State University.
He received the Ph.D. (2010) degree in omputer
science from City University of Hong Kong, the

B.S. (2004) and M.S. (2007) degrees from Shanghai Jiao Tong University,
China. His research interests include cyber-physical systems, sensor networks,
and ubiquitous computing systems. He received the Best Paper Awards from
IPSN’17, CPSR-SG’17, Best Paper Runner-Ups from IEEE PerCom’13 and
IPSN’14.

Peng Cheng (M’10) received the B.Sc. degree in
automation and the Ph.D. degree in control science
and engineering, from ZJU, in 2004 and 2009,
respectively. From 2012 to 2013, he worked as
Research Fellow in Information System Technology
and Design Pillar, Singapore University of Technol-
ogy and Design. He is currently a Professor with
the College of Control Science and Engineering,
ZJU. His research interests include control system
security, cyber-physical systems.


	I Introduction
	II Related Work
	III Problem Statement and Approach Overview
	III-A Problem Statement
	III-B Approach Overview

	IV Case Studies
	IV-A Case Study 1: Free Spoken Digit (FSD) Recognition
	IV-A1 Data preparation
	IV-A2 Architecture of InfNet
	IV-A3 Architecture of ObfNet
	IV-A4 Inference accuracy of InfNet and ObfNet-InfNet
	IV-A5 Quality of obfuscation

	IV-B Case Study 2: Handwritten Digit (MNIST) Recognition
	IV-B1 Data preparation
	IV-B2 Architecture of InfNet
	IV-B3 Architecture of ObfNet
	IV-B4 Inference accuracy of InfNet and ObfNet-InfNet
	IV-B5 Quality of obfuscation

	IV-C Case Study 3: American Sign Language (ASL) Recognition
	IV-C1 Data preparation
	IV-C2 Architecture of InfNet
	IV-C3 Architecture of ObfNet
	IV-C4 Inference accuracy of InfNet and ObfNet-InfNet
	IV-C5 Quality of obfuscation


	V Implementation and Benchmark
	V-A Hardware Platforms
	V-B Benchmark Results
	V-B1 Model communication overhead
	V-B2 ObfNet and InfNet execution times and energy expenditures
	V-B3 Advantage of remote inference


	VI Conclusion and Future Work
	References
	Appendix
	A Confusion Matrices for Other Three ObfNets in FSD Recognition
	B Obfuscation Results of ObfNet OC on MNIST

	Biographies
	Dixing Xu
	Mengyao Zheng
	Linshan Jiang
	Chaojie Gu
	Rui Tan
	Peng Cheng


