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Abstract—As an emerging and prospective paradigm, the In-
dustrial Internet of Things (IIoT) enables intelligent manufactur-
ing through the interconnection and interaction of industrial pro-
duction elements. The traditional approach that transmits data in
a single physical network is undesirable because such a scheme
cannot meet the network requirements of different industrial
applications. To address this problem, in this paper, we propose
a network slicing orchestration system for remote adaptation
and configuration in smart factories. We exploit Software-Defined
Networking (SDN) and Network Functions Virtualization (NFV)
to slice the physical network into multiple virtual networks.
Different applications can use a dedicated network that meets its
requirements with limited network resources with this scheme. To
optimize network resource allocation and adapt to the dynamic
network environments, we propose two heuristic algorithms with
the assistance of Artificial Intelligence (AI) and the theoretical
analysis of the network slicing system. We conduct numerical
simulations to learn the performance of the proposed algorithms.
Our experimental results show the effectiveness and efficiency
of our proposed algorithms when multiple network services are
concurrently running in the IIoT. Finally, we use a case study to
verify the feasibility of the proposed network slice orchestration
system on a real smart manufacturing testbed.

Index Terms—Network slicing, Industrial Internet of Things,
Software-Defined Networking, artificial intelligence, remote adap-
tation and configuration.

I. INTRODUCTION

RECENTLY, Industry 4.0 is considered a significant driving
force for the new generation of the industrial revolution,

which is conducive to enter the era of intelligence. IIoT has
aroused widespread attention, which satisfies various applica-
tion scenarios such as remote adaptation and configuration, in-
telligent operation and maintenance, industrial Augmented Re-
ality, digital twins, and equipment collaborative operation [1]–
[4]. IIoT connects ubiquitous physical entities with computing
capabilities based on Internet technology and standards to
drive production with information and data technology through
industrial data modeling, management, and analysis.

IIoT involves various vertical industries, such as smart
manufacturing [5], autonomous driving [6], smart cities [7],
and intelligent health [8]. With the continuous transformation
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of business and the emergence of new applications, their net-
work demand fluctuates constantly in an orderly or disorderly
manner. The conventional one-fits-all network construction
method leads to expensive operation, deployment costs, and
inefficient resource utilization. Therefore, how to accommo-
date the diversity and dynamics of business requirements in
IIoT remains a challenging issue.

As a new generation of mobile communication technology,
5G effectively meets the high-performance and flexible net-
working requirements of the IIoT, with its extremely high
transmission speed, strong connection capability, and real-time
communication capability close to the industrial bus. Network
slicing [9] is a key technology of 5G that refers to building
a customized and isolated logical end-to-end network on the
substrate network, providing differentiated network services
for different user groups through various combinations of
functions, performance, and network connection relationships.
Meanwhile, it enables rapid network deployment and upgrades
to accommodate to changing market demands. It is worth men-
tioning that network slicing can safely and effectively isolate
different tenants, e.g., enterprise users who rent communica-
tion infrastructure from Internet Service Providers (ISPs), and
they can fully participate in the life cycle management of slice
instances.

The network slicing is implemented with the integration
of two emerging technologies, SDN [10] and NFV [11],
[12]. These two technologies empower end-to-end on-demand
network slicing with flexibility and effectiveness. The SDN is
a novel network architecture that adopts a centralized control
scheme, in which the network can manage and optimize the
network resources globally [13]. Traditionally, the network
functions have to run on dedicated hardware, which is highly
undesirable because the network functions can hardly scale
up or migrate discretionarily. To decouple the hardware and
software, NFV virtualizes and packages the network functions
as virtual machines or containers. These network functions are
called virtual network functions (VNFs), such as firewall, data
processing, IP address management, etc. At the run time, each
network service chains multiple VNFs on standard physical
facilities.

While there have been many attempts in both academia
and industry to exploit network slicing to improve the IIoT
performance and resilience in smart manufacturing, including
architecture design and implementation, resource optimization,
and slicing orchestration, their performance gain may degrade
since the nature of the network service are dynamic and
diverse [14]. Moreover, it is important to explore how to satisfy
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a new network service as it emerges in a smart manufacturing
system.

In this paper, we propose a network slicing architecture
for remote adaptation and configuration in smart factories.
Based on SDN and NFV, we further design a dynamic
network slice orchestration system for smart manufacturing
test bed, which supports multi-intention and multi-requirement
network services including Remote Operation (RO), real-time
Industrial Data Monitoring (IDM), and Video Surveillance
(VS). To minimize the deployment cost and meet the de-
ployment time requirement of network services, we propose
a static network slicing algorithm to compute the optimal
deployment strategy when the transmission link bandwidth
and computing resources are limited. To further adapt to the
dynamic changes of network services, we develop a rapid
scaling strategy for network resources with the assistance of
AI, i.e., an evolutionary algorithm. The evolutionary algorithm,
which is a generic population-based meta-heuristic optimiza-
tion algorithm based on Darwinian evolution, can capture
global solutions of complex optimization problems [15], [16].
Specifically, we accommodate the evolutionary algorithm to
smart manufacturing and integrate it into our orchestration
system. To the best of our knowledge, this is the first network
slicing system in IIoT that provides a global view of the IIoT
system to utilize the network slicing fully.

The main contributions of this work are summarized as
follows:

• To adapt various transmission requirements of network
services in IIoT, we design a dynamic network slicing
orchestration system based on SDN and NFV.

• Considering the dynamics and diversity, we formulate a
minimum cost deployment problem subject to resource
and delay constraints. Then, we propose two algorithms
to optimize the network slicing strategy.

• Through numerical simulation, we demonstrate the pro-
posed algorithms well solve the minimum deployment
cost problem. We implement and verify the proposed
system on a real test bed, which achieves on-demand
network resource allocation and scaling.

The rest of this paper is organized as follows. Sec.II briefly
reviews the related literature. Sec.III introduces the network
slicing architecture for remote adaptation and configuration
and build the mathematical model for the minimum deploy
cost problem. Sec.IV proposes effective algorithms for re-
source allocation in a network slicing system. Sec.V evaluates
the performance of the proposed algorithms. Sec.VI verifies
the feasibility of our system on an intelligent manufacturing
testbed. Sec.VII concludes the paper.

II. RELATED WORK

Existing studies related to network slicing can be broadly
divided into two categories, including the network slicing
architecture design and implementation, and resources allo-
cation and slicing orchestration. In the following subsection,
we introduce the related works in detail.

A. Network slicing architecture and implementation

There are several architectures and frameworks presented
and realized. For example, machine learning-based automatic
network slicing framework was proposed in [17] to intel-
ligently scale slice according to network state, trading off
robustness and resource efficiency. Based on the Lightweight
Slice Defined Cloud, Dantas et al. [18] proposed the Novel
Enablers for Cloud Slicing project to provide intelligent or-
chestration for federated cloud infrastructures. To satisfy re-
quirements of integrated fronthaul/backhaul transport network
in a multi-tenant environment, 5G-Crosshaul architecture was
designed [19] and implemented in [20], beneficial to the
performance efficiency as well as supporting simultaneous use
by different tenants. 5G NORMA [21] is a multi-service and
multi-tenant 5G system architecture, which adapts to the re-
quirements of heterogeneous services, mobility management,
Quality of Service (QoS), control and orchestration. Capitani
et al. [22] presented the experimental demonstration of a 5G
network slice deployment through the 5G-transformer archi-
tecture, transforming rigid mobile transport networks into a
flexible SDN/NFV-based mobile transport and computing plat-
form supporting different verticals (e.g., automotive, e-health,
e-industry). In order to shorten the time to market for new
network services, Twamley et al. [23] proposed 5GTANGO
utilized for the validation and verification of virtual net-
work functions and network services. The numerous works
presented multi-tenant network slicing architecture. However,
more attention should be paid to the network slicing system
in IIoT physical platforms, which considers various network
services and heterogeneous industrial protocols/equipment in
smart factories.

B. Resource allocation and slicing orchestration

Dawaliby et al. [24] proposed a distributed slicing scheme
including slicing admission control, resource reservation and
allocation, based on coalitional game and matching theory over
an SDN-based LoRaWAN architecture. However, due to real-
time network changes and different performance requirements
between different 5G scenarios, network slices need to be
adaptively adjusted online to adapt to the needs of specific
services dynamically. Hence, Afolabi et al. [25] proposed
a network slicing orchestration system, which includes a
dedicated entity for each domain to manage the corresponding
mobile network. Meanwhile, a dynamic auto-scaling algorithm
was designed for adapting dynamic resource demands includ-
ing proactive and reactive resource provisioning techniques
based on G/G/m queue model of the network. The performance
may be severely degraded when multiple VNFs are running
on the same physical device. In order to solve it, a time-slot
based 5G network slice model and an online lazy-migration
adaptive interference-aware algorithm were proposed for real-
time VNF deployment and cost-efficient VNF migration in a
5G network slice [26]. On the other hand, predictive schedul-
ing is conducive to solving conflicts between service function
chains of different network requests and improving server
resource scheduling efficiency. Huang et al. [27] proposed
POSCARS, an efficient predictive and online service chaining
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Fig. 1. The network slicing architecture for remote adaptation and configu-
ration in a smart factory.

and resource scheduling scheme that achieves tunable trade-
offs among various system metrics with stability guarantee. By
a non-trivial transformation, the complex optimization problem
was decoupled into a series of online sub-problems to achieve
the optimality with only limited information.

Although the massive amount of network data puts tremen-
dous pressure on network slicing performance, it also pro-
vides an opportunity for new resource management methods.
AZTEC [28] is a data-driven framework, integrates the deep
learning architectures and a traditional optimization algorithm
to effectively allocates network capacity to individual slices.
AZTEC predicts resource allocation to minimize the manage-
ment costs caused by resource overprovisioning, instantiation
and reconfiguration. A scalable digital twin of network slicing
was developed [29], aiming to capture the intertwined rela-
tionships among slices and monitor the end-to-end metrics of
slices under diverse network environments. The novel Graph
Neural Network model was exploited to learn insights directly
from slice-enabled networks represented by non-Euclidean
graph structures. To solve the problem of reduced QoS caused
by traffic surge and user mobility, Chen et al. [30] came
up with a deep-learning-based multivariate long short term
memory model to capture the spatiotemporal patterns of traffic
and mobility for accurate prediction. The cost and quality
objectives were formulated as a RRH-BBU mapping of the
set partition problem, and Resource Constrained Label Propa-
gation (RCLP) algorithm was proposed to solve it. The above
studies focus on resource allocation of network slices. In this
paper, we further consider the impacts of three factors, includ-
ing network services requirements, communication resource,
and computing resource.

III. SYSTEM DESIGN AND MODEL

This section introduces the design and components of
the dynamic network slicing orchestration and management
system for remote adaptation and configuration of smart fac-
tories. We formulate the network slicing orchestration problem
as a deployment cost optimization problem subject to the
constraints of bandwidth resources, computing resources, and
delay requirements.

Fig. 2. The framework and components of network slicing system.

A. System overview

In this paper, we define the remote adaptation and con-
figuration of smart factories as a set of multi-intention ser-
vices including RO, real-time IDM, and VS. Operators can
accurately control the on-site industrial equipment remotely
in real-time according to the video pictures and various data
of the production site. Meanwhile, the intelligent detection
system realizes safety monitoring and management of the
production site through real-time industrial data collection,
image recognition, custom alarms, and other technologies. Un-
der this circumstance, different network services have varying
requirements for bandwidth, delay, and network functions. To
address this challenge, we exploit network slicing to virtualize
multiple virtual networks (i.e., network slices) on one physical
network to support multi-intention services simultaneously.

The network slicing architecture for the remote adaptation
and configuration scenario, as shown in Fig.1, contains the
factory domain, transportation domain, and service domain.
The factory domain includes various types of sensors, actu-
ators, smart equipment, and industrial instrumentation, with
different data types, communication protocols, operating sys-
tems, and production beats. The service domain comprises of
various intelligent applications, such as digital twin, remote
operation, visual inspection, and production monitoring, with
distinct communication constraints. The network slicing of
the transportation domain enables scalable network resource
configurations, satisfying different requirements of businesses
and user groups.

B. Network slicing system architecture

It is desirable to have a resilient and tailored network
that supports the concurrent transmission of multiple network
services (e.g., remote control and monitoring). To this end, as
shown in Fig. 2, we propose an SDN and NFV-based dynamic
network slicing orchestration and management framework in
the transmission domain. Based on a standard for NFV [31],
we design the NFV architecture and integrate the SDN so
that we can take advantage of both. As two core components,
the SDN controller and NFV MANO cooperatively man-
age hardware resources to achieve centralized optimization
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and network parameter configuration. The system has six
components, i.e., SDN Controller, General Physical Switch,
NFV management and orchestration (NFV MANO), VNF,
Network Functions Virtualization Infrastructure (NFVI), and
Application. Next, we introduce each component from top to
bottom.

1) Application: Applications exist in the application plane
and interact with the SDN controller through northbound
interfaces. Controlling the network through applications brings
programmability, powerful network recovery capabilities, and
rapid deployment mechanisms. It solves the limitations of tra-
ditional manual processing and greatly improves the flexibility
and scalability of the network.

2) SDN Controller: The control plane is composed of one
or more SDN controllers, which are logically centralized and
have global knowledge of the network. The SDN controller
is responsible for transmitting the decision information to
the network equipment (e.g., general physical switches in the
following) in southbound interfaces, such as OpenFlow, P4,
OF-Config, NET-CONF, etc. In addition, the SDN controller
first retrieves network status information, and then transmits
processed information to NFV MANO, including the network
traffic statistics, available bandwidth, and bandwidth usage
efficiency, to optimize the life cycle management of VNFs.

3) General Physical Switch: General physical switches
(i.e., programmable switches) constitute the data plane and
forward user data according to the forwarding entries gener-
ated by the control plane. Switches in the data plane forward
user data according to the forwarding entries generated by the
control plane. NFVI and VNF modules are also based on the
general physical switches. Virtual machines or containers are
installed in their operating system to achieve specific VNFs
thanks to the universal standard devices.

4) NFV MANO: NFV MANO contains Virtualized In-
frastructure Manager (VIM), Virtualized Network Function
Manager (VNFM), and NFV Orchestration. VIM manages
hardware resources such as computing and storage, and sup-
ports the software and hardware of the virtualization layer
in NFVI. VNFM creates VNF and manage the proportion
of resources with the resource usage information from VIM.
NFV Orchestration obtains the global topology knowledge
and network status information from the SDN controller and
conducts VIM and VNFM to deploy VNF instances and
allocate infrastructure resources.

5) NFVI: NFVI is the foundation of hardware virtualization
and treats the commercial off-the-shelf hardware as a public
resource pool. NFVI divides resources into multiple subsets
and creates virtualized computing, storage, and network re-
source pools according to VNF allocation requirements.

6) VNF: VNF module implements specific network func-
tions by loading software on virtual machines achieved by
NFVI. And network services require VNFs to process data
packets in a particular order called a VNF-Forwarding-Graph
(VNF-FG) or Service Function Chain (SFC).

C. System model
As mentioned in section III-A, there are various ser-

vices in the remote adaptation and configuration scenario.

The 𝑛𝑡ℎ network service 𝑓𝑛 ∈ F is a five-tuple, i.e.,
𝑁𝑆𝑛 (𝑠𝑛, 𝑑𝑛, 𝑆𝐹𝐶𝑛, 𝑟𝑛, 𝐷𝑛), which respectively represent the
source node, destination node, service function chain, re-
quired bandwidth and end-to-end delay requirements. F =

{ 𝑓1, 𝑓2, ..., 𝑓𝑛, ..., 𝑓𝑁 } represents the set of network services,
and 𝑁 = |F | represents the number of network services.

Clearly, different SFCs represent different network services.
This is because the streams of different network services that
go through the SFC consist of the specific order or quantities
of VNFs according to their particularity. For instance, traffic of
VS passes the firewall to filter traffic from limited IP addresses,
video compression to mitigate the amount of data transferred,
and video decompression to recover the original video. The
real-time data of IDM go through the firewall, encryption and
decryption for secure transmission.

The service function chain of network services 𝑓𝑛 has 𝐽𝑛
VNFs, 𝑆𝐹𝐶𝑛 = (𝑉𝑁𝐹𝑛

1 , ..., 𝑉𝑁𝐹𝑛
𝐽𝑛
). There are a total of 𝑀

VNFs in the network. Each 𝑉𝑁𝐹𝑚 has its specific hardware re-
sources demand, 𝐷𝑒𝑚𝑎𝑛𝑑 (𝐶𝑃𝑈𝐶𝑜𝑟𝑒𝑠, 𝑅𝐴𝑀, 𝐷𝑖𝑠𝑘), respec-
tively indicating the required number of CPU cores, RAM and
disk resources for the corresponding virtual machine. Note
that the resources like RAM and Disk are abundant compared
with CPU cores. Therefore, we consider only CPU cores as
the resource constraint in physical switches.

We consider a physical network 𝐺 (𝑉, 𝐿), where 𝑉 repre-
sents the set of nodes, and 𝐿 represents the set of directed
links, (𝑢, 𝑣) ∈ 𝐿. Our goal is to find a shortest path for the flow
𝑓𝑛 to meet the transmission delay requirement of the network
and service chain, and minimize the network cost with limited
bandwidth and hardware resources. For a link between node
𝑢 and 𝑣, the bandwidth constraint can be expressed as

𝑁∑︁
𝑛=1

𝑥𝑛 (𝑢, 𝑣) · 𝑟𝑛 ≤ 𝑅 (𝑢, 𝑣) ,∀ (𝑢, 𝑣) ∈ 𝐿, (1)

where 𝑟𝑛 denotes the bandwidth allocated to 𝑓𝑛 and 𝑅 (𝑢, 𝑣) is
bandwidth capacity of the link. 𝑥𝑛 (𝑢, 𝑣) is a binary variable.
If the link between node 𝑢 and 𝑣 is allocated to 𝑓𝑛, 𝑥𝑛 (𝑢, 𝑣) =
1. Otherwise, 𝑥𝑛 (𝑢, 𝑣) = 0. Excepting 𝑠𝑛 and 𝑑𝑛, the flow
conservation constraint requires each physical node to satisfy
that the number of inflows equals to the number of outflows,
which is expressed as

|𝑉 |∑︁
𝑢=1

𝑥𝑛 (𝑢, 𝑣) −
|𝑉 |∑︁
𝑢=1

𝑥𝑛 (𝑣, 𝑢) =


−1, 𝑖 𝑓 𝑣 = 𝑠𝑛
1, 𝑖 𝑓 𝑣 = 𝑑𝑛
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (2)

Similarly, since the number of CPU cores on a physical
equipment is finite, the computing resource constraint is

𝑁∑︁
𝑛=1

𝐽𝑛∑︁
𝑗=1

𝑦
𝑗 ,𝑣
𝑛 · 𝑄(𝑉𝑁𝐹𝑛

𝑗,𝑣) ≤ 𝑟𝑒𝑠𝑣 ,∀𝑣 ∈ 𝑉, (3)

where 𝑦
𝑗 ,𝑣
𝑛 indicates the distribution of VNF, 𝑄(𝑉𝑁𝐹𝑛

𝑗,𝑣
) is

the number of CPU cores required by the 𝑉𝑁𝐹𝑛
𝑗,𝑣

, and 𝑟𝑒𝑠𝑣

denotes the computing resource capacity of node 𝑣. If the 𝑗 𝑡ℎ

VNF of 𝑓𝑛 is deployed at physical switch node 𝑣, 𝑦
𝑗 ,𝑣
𝑛 = 1.

Otherwise, 𝑦
𝑗 ,𝑣
𝑛 = 0. When there is no link between node 𝑢

and node 𝑣, the distribution of the VNF does not exist, i.e.,
𝑦 𝑗 ,𝑣 = 0, 𝑦 𝑗 ,𝑢 = 0. And the VNF allocation constraint ensures
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that each VNF of network services is assigned to only one
physical node, which means

|𝑉 |∑︁
𝑣=1

𝑦
𝑗 ,𝑣
𝑛 = 1,∀𝑛 ∈ 𝑁, 𝑗 ∈ 𝐽𝑛. (4)

In addition, IIoT requires real-time network services, so that
the end-to-end delay requirements is expressed as∑︁

(𝑢,𝑣) ∈𝑃𝑛

𝑑𝑢,𝑣𝑛 +
∑︁
𝑣∈𝑃𝑛

𝑑𝑣𝑛 ≤ 𝐷𝑛, (5)

where
𝑑𝑢,𝑣𝑛 = 𝑑𝑡𝑟𝑎𝑛𝑠𝑢,𝑣 + 𝑑

𝑝𝑟𝑜𝑝
𝑢,𝑣 , ∀ (𝑢, 𝑣) ∈ 𝑃𝑛, (6)

and

𝑑𝑣𝑛 = 𝑑
𝑞𝑢𝑒𝑢𝑒
𝑣 (𝑉𝑁𝐹𝑛

𝑗 ) + 𝑑
𝑝𝑟𝑜𝑐
𝑣 (𝑉𝑁𝐹𝑛

𝑗 ), ∀𝑣 ∈ 𝑃𝑛. (7)

Especially, the path of 𝑓𝑛 is 𝑃𝑛 =
{
𝑣𝑛,1, 𝑣𝑛,2, ..., 𝑣𝑛,𝑙

}
.

𝑑𝑡𝑟𝑎𝑛𝑠𝑢,𝑣 and 𝑑
𝑝𝑟𝑜𝑝
𝑢,𝑣 are the transmission delay and propagation

delay on the link (𝑢, 𝑣), respectively. 𝑑
𝑞𝑢𝑒𝑢𝑒
𝑣 (𝑉𝑁𝐹𝑛

𝑗
) and

𝑑
𝑝𝑟𝑜𝑐
𝑣 (𝑉𝑁𝐹𝑛

𝑗
) represent the queue delay and processing delay

deploying 𝑉𝑁𝐹𝑛
𝑗

on node 𝑣, respectively, and the total delay
can be regarded as the duration of 𝑓𝑛 flowing through a certain
VNF at a certain node.

The length of packet 𝐿 𝑏𝑖𝑡𝑠 and allocated bandwidth 𝑟𝑛 are
fixed, hence 𝑑𝑡𝑟𝑎𝑛𝑠𝑢,𝑣 = 𝐿

𝑟𝑛
is a constant. To simplify the problem,

we assume that 𝑟𝑛 is large enough, so that 𝑑
𝑞𝑢𝑒𝑢𝑒
𝑣 (𝑉𝑁𝐹𝑛

𝑗
)

can be ignored. The propagation delay and process delay
are determined by the speed of light and the length of the
cable and the resources allocated to the corresponding VM,
respectively. Hence, both 𝑑

𝑝𝑟𝑜𝑝
𝑢,𝑣 and 𝑑

𝑝𝑟𝑜𝑐
𝑣 (𝑉𝑁𝐹𝑛

𝑗
) can be

regarded as a constant. Therefore, 𝑑𝑢,𝑣𝑛 and 𝑑𝑣𝑛 can be obtained
through experimental measurements. Intuitively, the time delay
constraint inequality is actually a constraint on the number of
path hops. Deployment cost is composed of node cost and link
cost, where the node cost is the sum of the cost of computing
resource deployment for all nodes and the link cost is the sum
of the cost of bandwidth resource allocation for all links in
𝑃𝑛. The deployment cost to satisfy 𝑓𝑛 is

𝑐𝑜𝑠𝑡𝑛 =
∑︁

(𝑢,𝑣) ∈𝑃𝑛

𝑐𝑜𝑠𝑡𝑢,𝑣𝑛 +
∑︁
𝑣∈𝑃𝑛

𝑐𝑜𝑠𝑡𝑣𝑛

=
∑︁

(𝑢,𝑣) ∈𝑃𝑛

𝑐𝑢,𝑣𝑟𝑛 +
∑︁
𝑣∈𝑃𝑛

𝑐𝑣 (𝑉𝑁𝐹𝑛
𝑗 ), ∀𝑛 ∈ 𝑁,

(8)

where 𝑐𝑜𝑠𝑡𝑣𝑛 represents the node cost required to satisfy 𝑓𝑛,
𝑐𝑜𝑠𝑡

𝑢,𝑣
𝑛 represents the link cost, 𝑐𝑢,𝑣 is the cost required to

allocate unit bandwidth, and 𝑐𝑣 (·) represents the cost function
of resources required to deploy 𝑉𝑁𝐹𝑛

𝑗
on node 𝑣, which

is a monotone increasing function. In general, when a new
network service appears in the network, we need to determine
whether the current network has sufficient resources. If avail-
able resources are adequate, the network service is approved
to access the network. The optimal path of the minimum
deployment cost is computed for the network service while
meeting bandwidth and computing resources constraints and
end-to-end delay requirements.

Fig. 3. Construction of the auxiliary graph 𝐻𝑛 for the network service 𝑓𝑛.

IV. OPTIMIZATION OF THE NETWORK SLICING SYSTEM

This section proposes a static network resource allocation
(STNRA) algorithm to obtain the optimal slicing strategy with
relatively stable network conditions. In addition, considering
that the demand for network services changes dynamically in
the real smart factory, we propose a dynamic network slicing
orchestration (DNSO) algorithm for such a scenario.

A. Static network resource allocation

Our proposed problem is regarded as two integrated selec-
tion schemes, including path selection for the traffic transmis-
sion and node selection for the VNFs deployment. Generally
speaking, the delay-constrained shortest path problem is NP-
hard. And then, the path selection problem with VNF selection
is still an NP-hard problem [32]. Therefore, in this subsection,
we transform the original problem into a delay-constrained
shortest path problem by constructing an auxiliary graph [32]
for each network service, and then mainly focus on solving
the proposed optimization problem by applying Lagrange
Relaxation based Aggregated Cost (LARAC) algorithm [33] to
compute the least costly path that meets the delay requirement
and limited resources.

1) Construction of the auxiliary graph: 𝐻𝑛 denotes the
auxiliary graph for each incoming network service 𝑓𝑛. The
auxiliary graph is composed of the source node, destination
node, and all physical switch nodes of the network service.
As shown in Fig.3, there are three steps to build an auxiliary
graph. Firstly, we deploy 𝐽𝑛 VNF sets in order according
to the SFC information of the 𝑓𝑛, and each set 𝑉𝑛

𝑗
consists

of all physical nodes, i.e., 𝑉𝑛
𝑗

= 𝑉 . Secondly, we denote
the edge weights of the source node to 𝑉𝑁𝐹𝑛

1 and the
destination node to 𝑉𝑁𝐹𝑛

𝑐 as 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑝𝑎𝑡ℎ (𝑠𝑛, 𝑉𝑁𝐹𝑛
1 ) and

𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑝𝑎𝑡ℎ (𝑉𝑁𝐹𝑛
𝐽𝑛
, 𝑑𝑛), respectively. Thirdly, we compute

the shortest paths between nodes 𝑢 ∈ 𝑉𝑛
𝑗

and 𝑣 ∈ 𝑉𝑛
𝑗+1,

and denote the edge weights as the cost of the shortest path
between them in 𝐺 (𝑉, 𝐿) if the shortest path exists1.

2) STNRA algorithm for minimizing the deployment cost of
slices: As shown in Algorithm 1, we first compute shortest
paths of all pairs, (i.e., 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ(𝑢, 𝑣),∀𝑢, 𝑣 ∈ 𝑉) in
𝐺 (𝑉, 𝐿) and construct the auxiliary directed acyclic graph
𝐻𝑛. Based on LARAC Algorithm, we obtain the shortest path
𝑃𝑛, the indicator variables 𝑥𝑛 (𝑢, 𝑣) and 𝑦

𝑗 ,𝑣
𝑛 with the delay

1The weight is recorded as positive infinite if the shortest path does not
exist.
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Algorithm 1 STNRA algorithm for minimizing the deploy-
ment cost of slices
Input: Set of network services F , the physical network
𝐺 (𝑉, 𝐿).
Output: The shortest path 𝑃∗

𝑛, the optimal indicator variables
𝑥∗𝑛 (𝑢, 𝑣) and 𝑦∗

𝑗,𝑣

𝑛 .
1: Initialization: the number of network services 𝑁 := |F |,

bandwidth capacity 𝑅 (𝑢, 𝑣), delay of link 𝑑
𝑢,𝑣
𝑛 , delay of

node 𝑑𝑣𝑛;
2: 𝑛 = 0, 𝐹𝐿𝐴𝐺 = 1;
3: while 𝑛 ≤ 𝑁 do
4: Compute all pairs shortest paths in 𝐺 (𝑉, 𝐿), construct

the auxiliary directed acyclic graph 𝐻𝑛 and assign a
weight to each of its nodes and links by Eq. (8);

5: Find a shortest path 𝑃𝑛 in 𝐻𝑛 for 𝑓𝑛 with the delay
requirement by invoking LARAC Algorithm, and obtain
the 𝑥𝑛 (𝑢, 𝑣) and 𝑦

𝑗 ,𝑣
𝑛 ;

6: if
𝑁∑
𝑛=1

𝑥𝑛 (𝑢, 𝑣) · 𝑟𝑛 ≤ 𝑅 (𝑢, 𝑣) ,∀ (𝑢, 𝑣) ∈ 𝐿 and

𝑁∑
𝑛=1

∑
𝑗

𝑦
𝑗 ,𝑣
𝑛 ≤ 𝑟𝑒𝑠𝑣 ,∀𝑣 ∈ 𝑉 then

7: 𝑃∗
𝑛 = 𝑃𝑛, 𝑥∗𝑛 (𝑢, 𝑣) = 𝑥𝑛 (𝑢, 𝑣)), 𝑦∗

𝑗,𝑣

𝑛 = 𝑦
𝑗 ,𝑣
𝑛 ;

8: else
9: Delete the corresponding link or node in 𝐺 (𝑉, 𝐿);

10: end if
11: 𝑛 = 𝑛 + 1;
12: end while

requirement (line 4-5). Since the bandwidth of the physical
link and the computing resources of the physical switch are
limited, if the resource constrains (Eq. 1 and Eq. 3) are

violated, i.e.,
𝑁∑
𝑛=1

𝑥𝑛 (𝑢, 𝑣) · 𝑟𝑛 ≥ 𝑅 (𝑢, 𝑣) ,∀ (𝑢, 𝑣) ∈ 𝐿 or

𝑁∑
𝑛=1

∑
𝑗

𝑦
𝑗 ,𝑣
𝑛 ≥ 𝑟𝑒𝑠𝑣 ,∀𝑣 ∈ 𝑉 , we will delete the correspond-

ing link or node in 𝐺 (𝑉, 𝐿) and re-compute the auxiliary
graph. Otherwise, we obtain the resource allocation strategy
(𝑃∗

𝑛, 𝑥
∗
𝑛, 𝑦

∗ 𝑗,𝑣
𝑛 ) of the network service 𝑓𝑛 (line 6-10).

B. Dynamic network slicing orchestration

In a smart factory, the mobility of equipment and changes
in perception strategies and production tasks trigger network
traffic to change in both space and time domains continuously.
The STNRA algorithm based on graph theory recursively
calculates the auxiliary graph for network services. As the
computation cost increases with the computation space, we
leverage the Natural Aggregation Algorithm (NAA) [34] to
implement the DNSO algorithm. NAA is an emerging evolu-
tionary algorithm inspired by the collective decision-making
intelligence of group-living animals. We further accommodate
the NAA to multi-service industrial scenarios.

1) Dimensionality reduction: The ( |𝑉 | + 𝐽𝑛) ∗ |𝑉 | variables
have an extremely high computational complexity. And the
path selection matrix 𝑋𝑛 and VNF allocation matrix 𝑌𝑛 are
sparse matrices, making most of the computing power wasted.
To improve the computation efficiency, we construct an aux-
iliary vector z = [𝑝1, 𝑝2, ..., 𝑝𝑀 , 𝑞1, 𝑞2, ..., 𝑞𝐽𝑛 , 𝑠] in DNSO

Algorithm 2 DNSO algorithm to optimize the deployment
cost of slices
Input: Set of network services F , the physical network
𝐺 (𝑉, 𝐿).
Output: The |𝑉 |∗|𝑉 | path selection matrix 𝑋𝑛, the 𝐽𝑛∗|𝑉 | VNF
allocation matrix 𝑌𝑛, the optimal auxiliary vector z∗, the mini-
mum deployment cost 𝑐𝑜𝑠𝑡𝑛∗.

1: Initialization: the number of network services 𝑁 := |F |,
bandwidth capacity 𝑅 (𝑢, 𝑣), delay of link 𝑑

𝑢,𝑣
𝑛 , delay of

node 𝑑𝑣𝑛;
2: while 𝑛 ≤ 𝑁 do
3: Dimensionality reduction through the variable mapping

(𝑋𝑛, 𝑌𝑛) → z;
4: Compute the optimal z∗ and 𝑐𝑜𝑠𝑡𝑛

∗ based on NAA
subject to the constraint (1) - (5);

5: while 𝑜𝑟𝑑𝑒𝑟𝑛 is FALSE do
6: Add z((𝑋𝑛, 𝑌𝑛))! = z∗ (𝑋𝑛

∗, 𝑌𝑛
∗) as a new constraint

to the original problem;
7: Recompute the optimal z∗ based on NAA;
8: end while
9: 𝑛 = 𝑛 + 1;

10: end while

algorithm. Especially, 𝑀 ≤ |𝑉 | denotes the expected length
of the selected path, 𝑞 𝑗 indicates the deployment location of
the VNF, 𝑝𝑖 and 𝑠 denote the node and valid length of the
selected path, respectively. The first 𝑠 nodes of the path are
valid, and the remaining nodes are set to zero. For example,
for a network service with 2 VNFs in the network of 6 nodes,
z = (1, 3, 5, 0, 0, 0, 1, 3, 3) denotes that the transmission path
of the data flow is 𝑣1 → 𝑣3 → 𝑣5, the two VNFs are deployed
on node 𝑣1 and 𝑣3 in order, and the first 3 nodes of the path
are valid. Based on this method, we map the original variables
to z decreasing the number of variables from ( |𝑉 | + 𝐽𝑛) ∗ |𝑉 |
to (𝑀 + 𝐽𝑛 + 1).

2) DNSO algorithm: Algorithm 3 describes how to opti-
mize the deployment cost of network slicing. We first conduct
dimensionality reduction exploiting the auxiliary vector z. The
NAA is invoked to search for the optimal path selection
and VNF deployment strategy subject to the constraint (1)-
(5) (line 4). NAA generates a population of D-dimension
vector, which representing potential solutions for the given
problem. The algorithm evolves according to the constraints
and optimization objectives set, and improves the accuracy by
adjusting the number of iterations and clusters. Then we judge
whether the scheme satisfies the SFC sequence constraint,
that is, whether the VNF is deployed in a specific order. If
satisfied, the current plan is the optimal strategy. Otherwise,
this strategy should be eliminated and recomputed until the
constraint is met (line 5-8). The time complexity of algorithm
3 is 𝑂 (𝑁 × 𝑃× 𝐼 ×𝐷), where 𝑃 is the number of populations,
𝐼 is the number of iterations, and 𝐷 ≤ (𝑀 + 𝐽𝑛 + 1) is the
dimension of optimization variable.

V. PERFORMANCE EVALUATION

In this section, we profile the performance of STNRA and
DNSO algorithm through MATLAB numerical simulation,
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(d) Delay distribution for DNSO.

Fig. 4. Status distribution of each network service, when 𝑁 = 125.

including the efficiency of the network slicing orchestration
scheme, end-to-end network delay, and service acceptance
rate. Furthermore, we compare and evaluate the performance
of our solution for different parameters, such as network
services number 𝑁 , the cost function of resources required
to deploy VNFs, bandwidth capacity 𝑅(𝑢, 𝑣), and end-to-end
delay requirement 𝐷𝑛, respectively. We also compared the
performance of STNRA and DNSO algorithm.

We conduct simulations on a laptop, which has a 1.6 GHz
CPU and 8 GB RAM. Unless otherwise stated, the parameters
used in the simulation are set as follows. In our experiments,
network size is |𝑉 | ∈ {50, 75, 100, 125} and the number
of network services is 𝑁 ∈ {50, 75, 100, 125, 150} [26].
The bandwidth capacity of the link 𝑅(𝑢, 𝑣) is 100 Mbps.
Considering that VS has high requirements for bandwidth,
while RO and IDM are sensitive to delay. For RO, the delay
requirement 𝐷𝑛 is 0.1 ∼ 0.25 ms, and the required bandwidth
𝑟𝑛 is 0.5 ∼ 1 Mbps. For IDM, 𝐷𝑛 is 3 ∼ 5 ms and 𝑟𝑛
is 1 ∼ 5 Mbps. For VS, 𝐷𝑛 is 10 ∼ 15 ms and 𝑟𝑛 is
20 ∼ 40 Mbps. The number of CPU cores of a single physical
node is 8. The number of VNF in 𝑆𝐹𝐶𝑛 is 𝐽𝑛 ∈ {3, 4, 5, 6, 7}
and the required number of CPU cores is 1 or 2. According to
different application scenarios, the cost function could be an
inverse proportional function, a step function or an exponential
function.

A. Status distribution of each network service

In this subsection, we focus on the status distribution of
each network service, including deployment cost and the end-
to-end delay in the STNRA and DNSO algorithm. To compare
the performance of the two algorithms, we normalize cost and
delay for all results. Fig. 4(a) and Fig. 4(c) show that the
deployment cost of network service increases as the serial
number of the network services increases. This is because
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Fig. 5. Effects of delay requirement on network services for STNRA, when
𝑉 = 50.

network services enter the network sequentially in our algo-
rithm, which decreases the available resources for subsequent
network services. With insufficient resources, network services
may choose a longer path, increasing the deployment cost.
Compared with DNSO, STNRA searches the values slowly
but exhaustively, which results in a lower deployment cost.
In other words, DNSO sacrifices the accuracy for its real-time
performance. Fig. 4(b) and Fig. 4(d) depict that the end-to-end
delay of the network service depends on the delay requirement
of the corresponding network service, so the distribution of the
end-to-end delay is relatively uniform. In addition, the average
delay of DNSO is less than that of STNRA, attributing to the
more allocated resources.

B. Impacts of delay requirement and network scale

This subsection measures how the delay requirement and
network scale affect the performance in STNRA and DNSO
algorithms on the network service. Different lines represent
different delay requirements. In this experiment, we consider
three delay requirements, i.e., 𝐷𝑛 = 3, 4.5, 6 units. Fig. 5(a)
shows the admitted rate of network services with different
delay requirements for STNRA. The admitted rates decrease
with the increasing the number of network services or en-
hancing end-to-end delay requirements. Fig. 5(b) shows that
the average cost of the network increases as the number of
network services increases when 𝑁 is small. After the average
cost reaches the peak value (𝑁 = 100), it decreases as the
number of network services increases. We can also see that,
a stricter delay requirement causes a lower admitted rate and
a smaller average cost of the network, because the available
bandwidth or CPU resources are insufficient in the network
when 𝑁 is too much, or 𝐷𝑛 is excessively strict.

Fig. 6(a) and Fig. 6(b) describe the effects of network scale
on network services for DNSO. We observe that the running
time increases as the network scale (𝑁 and 𝑉) increases.
Moreover, excessive network services or inadequate network
sizes significantly decrease the admitted rates. Similar to
before, superabundant network services lead to insufficient
network resources.

C. Performance comparison

In this subsection, we firstly compare the deployment
cost of our two algorithms with different cost functions. In
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Fig. 6. Effects of network scale on network services for DNSO.

(a) Average cost for STNRA. (b) Average cost for DNSO.

Fig. 7. Effects of cost function on network services

the simulation, the step-shape cost function is defined as
𝑓 (𝑥) = 𝛼1⌊𝛼2𝑥⌋, the inverse proportional cost function is
𝑓 (𝑥) = 𝛽 · 1

𝑟𝑒𝑠𝑣−𝑥+1 , and the exponential cost function is
𝑓 (𝑥) = 𝛾1 · 𝑒𝑥𝑝(𝛾2 (1 − 𝑥

𝑟𝑒𝑠𝑣
)), where 𝛼1 = 12, 𝛼2 = 1/5,

𝑟𝑒𝑠𝑣 = 30, 𝛽 = 5, 𝛾1 = 5, and 𝛾2 = 2 are regulatory factors
of cost functions determined by the physical network status
and specific environment. In particular, we add 1 to (𝑟𝑒𝑠𝑣 −𝑥)
so that the denominator of inverse proportional cost function
(i.e., 𝑟𝑒𝑠𝑣 −𝑥 +1) is always greater than 0. From Fig. 7(a) and
Fig. 7(b), we can see that the average cost of the network
service decreases as network nodes increase regardless of
the cost function. It is straightforward that the abundance
of network resources reduces the deployment cost. Also, the
step-shaped cost function of VNF deployment leads to higher
network costs, and the exponential cost function reduces the
average network cost. Besides, the DNSO algorithm generates
more average cost due to the incomplete search.

Fig. 8 presents the comparison between our two algorithms
and First-Fit Placement Algorithm (FFPA) [35] in terms of
computing resource utilization variance, average end-to-end
delay, average deployment cost, and admitted rate. Since FFPA
places each VNF at the first available node with adequate
capacity, which considerably decreases the computation com-
plexity of search algorithms, we consider FFPA as the base-
line for performance comparison. With the identical network
scale and transmission requirements, the strategy computed
by STNRA causes the lowest average deployment cost but
most end-to-end transmission time. In the DNSO scheme,
network nodes’ computing resource utilization variance is the
smallest, which means the most balanced VNF deployment.
Furthermore, DNSO has a smaller average cost and a higher
admitted rate than FFPA. In conclusion, the performance of the
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Fig. 8. Comparison of algorithms, when 𝑁 = 100.

Fig. 9. The intelligent manufacturing testbed.

DNSO algorithm is superior in constantly changing industrial
environments.

VI. TESTBED AND CASE STUDY

In this section, we present an OPC Unified Architecture-
based (OPC UA [36]) intelligent manufacturing testbed for
remote adaptation and configuration. To meet the requirements
of multiple network services, we implement the network
slicing orchestration and management system on the testbed.

A. Production line

Fig. 9 shows that our experimental platform [36] takes
the personalized box as the production target and extracts
the common processing process of the discrete manufacturing
industry, including the grasping unit, screwing unit, laser
printing unit, and image detection unit. First of all, Robot 1
(ABB IRB 120 Robot [37]) grabs the base and cover of the
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box to the tooling plate, passes it through the conveyor belt to
the screw-tightening unit, and then uses the Robot 2 (TURIN
STH030-500 Robot [38]) with a screw shaft (Desoutter CVIC
II ECSF10 [39]) to tighten the four screws to the box cover.
After the assembly is completed, the laser printer (Kinglee
F2000 [40]) prints character strings or patterns on the box.
Then, the quality inspection of the assembly and marking
results of the personalized box is carried out by a camera
(Cognex In-Sight 7010C [41]) in the image detection unit.
Finally, the finished box is transported to the pickup area
through a circular conveyor belt. In addition, the testbed is
equipped with four displacement sensors (Keyence DL-EPL
IL-056 [42]) to detect the position of the product. The logic
control of the entire production line is completed by the
Programmable Logic Controller (PLC, MELSEC iQ-F FX5U-
64MT [43]) through the ladder diagram.

B. OPC UA-based communication and data collection

There are various communication protocols in the testbed,
including PROFINET [44], Modbus [45], EtherCAT [46],
Ethernet/IP [47]. Note that some protocols are proprietary
and not compatible with each other. We propose to use the
OPC UA protocol to solve the incompatibility issue. The
OPC UA server collects the equipment status data and stores
them in a unified format. For example, the four-arm TURIN
Robot uses the Modbus communication protocol. The OPC
UA server parses Modbus messages and converts them in the
form of the information model [36]. The information model
is composed of nodes (i.e., object nodes, variable nodes, and
method nodes) and their reference relationships. A variable
or method node belongs to an object node. Specifically, a
variable node represents a physical parameter of an object,
and a method node delegates an operation controlling devices’
status called by OPC UA clients. For instance, FourArmRobot
and LaserPrinter are two object nodes on the OPC UA
server, which represent the information models of TURIN
Robot and Kinglee laser printer, respectively. The object node,
FourArmRobot, has several variable nodes, such as FourArm-
RobotX and FourArmRobotY, indicating the current position
coordinates of the X-axis and Y-axis, respectively. The OPC
UA client can subscribe to variable nodes to obtain real-time or
historical data of the production line. The LaserPrinter has a
method node called LaserPrinterPattern, which allows users to
customize the printed pattern. The OPC UA client can operate
the equipment by calling method nodes.

C. Case study

In this subsection, we build the communication network for
our intelligent manufacturing testbed to realize remote adap-
tation and configuration in IIoT. We virtualize three mutually
isolated network slices (i.e., RO, real-time IDM, and VS), and
there may be multiple network requests on each slice. RO and
IDM are respectively implemented through the method node
and variable node of the OPC UA information model of the
production line equipment. Users can modify the speed of the
conveyor belt, change the laser-printed patterns and monitor
industrial data during the production process thousands of

Fig. 10. The network slicing orchestration system in the physical network.

Fig. 11. The deployment scheme computed by the proposed algorithms.

miles away. As for VS, we leverage a high-definition camera
(EZVIV C6WI [48]) to monitor the running status in order
to make timely adjustments and ensure a safe production
environment.

In our experimental environment, we consider 2 RO, 2
IDM, and 2 VS requests and exploit 5 common standard in-
dustrial microcomputers (Shenzhen Konghui MFC-3102 [49])
as physical network nodes. As shown in Fig. 10, we deploy
one Ryu controller (SDN controller), four Open vSwitches
(OVSs, SDN switches), one OpenStack (VIM), and one Open
Source MANO (OSM, NFV MANO) on microcomputers to
implement the network slicing orchestration system.

Before we implement the physical network slicing, the
minimum cost deployment scheme is obtained through nu-
merical computations. The network scale in the experimental
environment is relatively small, so we get the same deploy-
ment scheme (Fig. 11) computed by the STNRA and DNSO
algorithm. Ryu controller allocates corresponding ports and
appropriate bandwidth to six network slice instances. The
VNFs are orderly deployed on the VMs created by OpenStack
for the slice instances. In our physical network, the average
end-to-end latency of the three slices all satisfy the demands of
network services, which are 0.85 ms, 7.48 ms, and 461.33 ms,
respectively.

VII. CONCLUSION

This paper presented the study on network slicing for the re-
mote adaptation and configuration scenario in smart factories.
Based on SDN and NFV, we implemented a dynamic network
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slice orchestration system, which supports multi-intention and
multi-requirement network services, including RO, IDM, and
VS. To minimize the deployment cost for network services,
we further proposed two network slicing algorithms. Sim-
ulation results demonstrate the effectiveness and efficiency
of our proposed algorithms when multiple network services
are concurrently running in the IIoT. Implementation of the
proposed network slice orchestration system on a real smart
manufacturing testbed verifies the feasibility of our solution.
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