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Abstract—Time-Sensitive Networking (TSN), an emerging net-
work technology, requires high-performance scheduling mech-
anisms to deliver deterministic service in Industry 5.0. Cyclic
Queuing and Forwarding (CQF) is launched to simplify the con-
figuration complexity of the early-stage mechanism Time-Aware
Shaper (TAS) in TSN flow scheduling. Previous CQF studies
adopt an inflexible incremental flow scheduling scheme, which
consists of flow sorting, offset search, and resource judgment.
However, we observe that flow sorting and offset search are
mutually interdependent. The offset of a flow helps determine the
resource status on the flow path, which can guide flow sorting. By
utilizing the interaction between flow and offset, we design a novel
scheduling approach that achieves high scheduling performance
and time efficiency. Specifically, the proposed approach combines
flow sorting and offset search together to select flow and its offset
(i.e., (flow, offset)) simultaneously. To effectively determine the
selecting priority and select the potential optimal flow-offset com-
bination, we define a unified metric, Mapping Score, to quantify
the schedulability of different flow and offset combinations. The
extensive experiments demonstrate that the scheduling success
rate of our proposed approach is on average 31.69% higher
than the baseline and 4.57% higher than the state-of-the-art FLJ
method. Moreover, it outperforms the state-of-art FLJ method
by 7.62% in large-scale linear topologies, indicating its great
scalability in different network scales and complex topologies.

Index Terms—Industrial Internet of Things, Time-Sensitive
Networking, CQF model, scheduling, mapping score.

I. INTRODUCTION

INDUSTRY 5.0 envisions increasing interconnectivity and
intelligent automation in IIoT, which has stringent Quality

of Service (QoS) requirements [1]. Timeliness, one of the most
critical QoS metrics in IIoT networks [2], affects the pro-
duction efficiency of many time-sensitive industries, including
energy [3], smart grid [4], and telemedicine [5]. Thus, it is
desirable to have a deterministic network with bounded delay
and jitter in industrial systems [6].

Time-Sensitive Networking (TSN) is proposed in IEEE
802.1 Standard [7] to improve the real-time capabilities that
previous Ethernet [8] lacks. TSN aims at delivering deter-
ministic services, making it suitable for time-sensitive appli-
cations [9]. To achieve deterministic transmission, the IEEE
802.1Qbv standard [10] specifies a gate mechanism called
Time-Aware Shaper (TAS) to schedule flows in TSN. TAS

This work was partially supported by National Natural Science Foundation
of China under Grant U1909207 and the State Key Laboratory of Industrial
Control Technology, Zhejiang University, China (No.ICT2022A01). Corre-
sponding author: Chaojie Gu.

M. Guo, C. Gu, S. He, Z. Shi and J. Chen are with the State Key Laboratory
of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang,
310027, China. E-mail: {gm oct, gucj, s18he, shizg, cjm}@zju.edu.cn.

𝐟𝐥𝐨𝐰𝟏 𝐟𝐥𝐨𝐰𝟐 𝐟𝐥𝐨𝐰𝒏

𝐨𝐟𝐟𝐬𝐞𝐭𝟏 𝐨𝐟𝐟𝐬𝐞𝐭𝟐 𝐨𝐟𝐟𝐬𝐞𝐭𝒏

time

port!
port"

port#

Resource Availability Flow Features

f$ . size
f% . size

f&. size

(𝐟𝐥𝐨𝐰𝒊 , 𝐨𝐟𝐟𝐬𝐞𝐭𝒋)

Top-Priority
(𝐟𝐥𝐨𝐰𝒕𝒐𝒑 , 𝐨𝐟𝐟𝐬𝐞𝐭𝒕𝒐𝒑)

Update Step++

(a)

𝐟𝐥𝐨𝐰𝟏

𝐨𝐟𝐟𝐬𝐞𝐭𝟏

Success/Fail

𝐟𝐥𝐨𝐰𝟐

𝐨𝐟𝐟𝐬𝐞𝐭𝟐

Success/Fail

𝐟𝐥𝐨𝐰𝐧

𝐨𝐟𝐟𝐬𝐞𝐭𝐧

Success/Fail

(b)

Fig. 1: Comparison between (a) the proposed approach and (b)
the incremental scheduling scheme. The proposed approach
utilizes the mutual interaction between flow and offset to
jointly leverage the resource availability and flow features.

utilizes two switch signals (i.e., 0 and 1) to control each
queue connected to the associated egress port. These control
signals are generated according to the predefined scheduling
scheme—Gate Control List (GCL), which requires dynamic
configuration on each queue of all the network hosts and
switches [8]. Especially, the configuration cost would increase
significantly in large-scale networks. To simplify the config-
uration complexity of GCL, Cyclic Queuing and Forwarding
(CQF), a simplified model, is proposed in IEEE 802.1Qch [11]
standard. CQF achieves this by statically configuring the
GCL [7] (see Section III).

However, the traffic scheduling and practical implemen-
tation remain open issues in CQF. For the sake of time
efficiency, the idea of incremental scheduling [6] is adopted
to ease the computation intensity of solver-based algorithms.
The incremental scheduling scheme is — (1) flow sorting,
(2) offset search, (3) resource judgement [12]. Whereas, this
serialized and inflexible scheme neglects the mutual interac-
tion between flow sorting and offset search — offset helps
determine the resource availability, which can guide flow
sorting. Resource availability provides information on the load
that the network can accommodate in the target flow path,
for this reason, flow sorting leveraging both flow features
and resource availability will exploit this information and
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thus lead to a more even allocation of the global resource
than only leveraging flow features. Since the prerequisite of
resource availability is offset, offset can guide flow sorting
and contribute to even resource allocation. Thus we should
utilize the mutual interaction between flow sorting and offset
search in scheduling for load balance level improvement.
However, the incremental scheduling scheme separates flow
sorting and offset search. That is, it first selects flow according
to the flow feature sorting sequences and then assigns offset
for this flow. The resource availability derived from offset
at the second step can not guide the flow sorting at the
first step due to the serialization feature of the incremental
scheduling scheme. As a result, it is impossible for flow
sorting of traditional incremental scheduling to leverage both
flow feature and resource availability, which decreases the
load balance level. Many studies that adopt the serialized and
inflexible incremental scheduling scheme neglect this mutual
interaction. For example, CQF and DIP joint scheduling [13] is
conducted with greedy algorithm, which sorts flows in size as-
cending order but neglects the guidance of offset to assist flow
sorting, leading to low scheduling performance in heavy-traffic
scenarios. ITP [14] proposes Tabu heuristic to find sub-optimal
solutions but the initial solution is generated with greedy
algorithm. As a result, it inevitably neglects the influence of
offset on flow sorting and decreases the load balance level. The
state-of-the-art FLJ-VB [12] utilizes position diversity to guide
flow sorting but fails to utilize offset, which leads to marked
scheduling performance degradation in resource-constrained
scenarios. We fill this gap by utilizing the interaction between
flow and offset. Specifically, we combine flow sorting and
offset search together to form a (flow, offset) selecting step. The
former provides information on flow features, i.e., the load that
the flow will add to the network. The latter helps determine
the resource availability, i.e., the load that the network can
accommodate in the target flow path. These two factors jointly
decide the impact of each-flow scheduling on the network
load balance, which can guide the scheduling to minimize
the impact on the network load balance in each step and
reach a high load balance level. The comparison of previous
incremental scheduling and our proposed approach is shown
in Fig. 1.

To effectively determine the scheduling priority, i.e., select
the most suitable (flow, offset) combination in each scheduling
step, FLJ-VB [12] utilizes position diversity depending on
flow period and path but it neglects the flow size and re-
source availability, leading to marked scheduling performance
degradation in resource-constrained scenarios. Greedy algo-
rithm [13] exploits flow size to determine schedule priority,
which fails to consider resource availability and leads to
unbalanced resource distribution. To tackle this problem, we
design a uniform metric Mapping Score. It comprehensively
exploits the information of both flows and global resources,
contributing to high load balance.

In this paper, we improve the classical incremental schedul-
ing scheme and propose an efficient approach to schedule
time-sensitive flows in CQF-based TSN. The proposed ap-
proach combines flow sorting and offset search together to
select flow and its offset combination (i.e., (flow, offset)) simul-

taneously in each step of scheduling. To determine the schedul-
ing priority, we design a unified metric Mapping Score to
quantify the influence of different (flow, offset) combinations
on the global resource (i.e., the schedulability of each com-
bination). The Mapping Score not only takes the flow sizes
into account but also considers the availability of resources on
the flow path. Following that, we design a heuristic schedul-
ing algorithm ensuring each selected combination makes the
least influence on the global resource load balance with
Mapping Score. We compare the proposed algorithm with
other prevalent algorithms (i.e., Naive, Naive Greedy, Tabu,
and FLJ) under various settings. The experimental results show
that the scheduling success rate with the proposed algorithm
is, on average 31.69% higher than with the Naive algorithm,
and 4.57% higher than with the most state-of-the-art FLJ.
Meanwhile, it saves more than half the time of the heuristic
computation-intensive Tabu algorithm. The contributions of
this paper can be summarized as follows:

• We observe that flow sorting and offset search steps
are mutually interdependent in the inflexible incremental
scheduling. We design a novel approach by well utilizing
this mutual interaction and coupling these two steps
to form a (flow, offset) selecting step, which improves
scheduling performance.

• A unified metric Mapping Score is introduced to quan-
tify the schedulability of each (flow, offset) combina-
tion and thus determine the scheduling priority. The
Mapping Score can assist the scheduling process to
keep load balance in each step and improve the global
load balance level.

• A Mapping Score-based Scheduling (MSS) algorithm is
designed as a general solver. MSS algorithm can generate
potentially better (flow, offset) sequences and guarantee
the load balance of the global resource. Meanwhile, it
achieves a better trade-off between computation time and
scheduling performance.

The rest of this paper is organized as follows. Section II
presents the related work. Section III introduces the system
models of switches, network topology, and data flows in
CQF-based TSN. Section IV states the target optimization
problem. Section V introduces Mapping Score and its utility
mechanism. Based on it, the designed algorithm is proposed.
Section VI shows the experiment setup and evaluation results,
and Section VII concludes this paper.

II. RELATED WORK

In past years, various scheduling algorithms under different
scheduling models of TSN have been proposed. Craciunas
et al. offer a comprehensible description of the IEEE 802.1
Qbv standard and a detailed investigation of the issues re-
lated to flow and frame isolation [15]. The authors propose
a Satisfiability Modulo Theories (SMT) model over linear
integer arithmetic that finds an exact transmission offset for
each frame to minimize the number of used queues. They
further find that the GCL without length limitation is not
feasible for real-world devices. Hence, they propose a set
of constraints for window-based scheduling of GCLs and
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Fig. 2: Scheduling architecture in CQF. It is composed of a
control plane and a data plane.

mapping the frames to the windows [16]. This model requires
non-linear arithmetic due to the multiplication of variables.
Experimental results of this model are given in [17], showing
the trade-off between the computation time and the maximal
number of windows per queue. Oliver et al. [18] take the
formalization of constraints from [16] and turn it into an
SMT model using the theory of arrays as the background
theory, with jitter minimization objective. The Z3 solver is
used for experimental evaluation and comparison between
this window-based synthesis algorithm and the frame-based
synthesis algorithm from [15]. Integer linear programming
(ILP) is also used to solve scheduling tasks [19], [20]. Previous
study [20] addresses a special case called no-wait scheduling,
where the frames are not allowed to wait at switches in the
queues. The proposed heuristic based on Tabu search was
already used for no-wait job shop scheduling problems [21]
and aimed to leave as much contiguous space as possible for
the best-effort traffic.

However, the execution time of the solver-based scheduling
significantly increases when the network scale enlarges. In
CQF scheduling, the idea of incremental scheduling is adopted
for better time efficiency in both research domains, i.e., offline
scheduling and online scheduling. Offline scheduling solves
static scheduling problems and has been widely applied in
industrial systems [22]. Injection Time Planning (ITP) [14]
is the first to solve traffic scheduling problems in CQF-based
TSN. The authors propose the ITP mechanism to optimize the
network throughput of time-sensitive flows. Tabu heuristic al-
gorithm with domain-specific optimizing strategies is designed
to schedule time-sensitive flows. In large-scale deterministic
networks, CQF and DIP (Deterministic IP) are converged to
schedule time-sensitive flows. The joint scheduling is formu-
lated as ILP and is conducted in a greedy algorithm [13].
FLJ-VB [12], which is based on divisibility theory, is built
to improve the schedule performance and reduce runtime.
For online scheduling in CQF, FITS [23] is proposed to
solve the online flow scheduling problem by incrementally
generating traffic schedules for new time-sensitive flows. The
above algorithms all adopt incremental scheduling. However,
the classical incremental scheduling process can be further

improved to increase the scheduling success rate and load
balance level by utilizing the mutual interaction between flow
sorting and offset search. In this paper, we mainly solve
the offline scheduling problem and combine flow sorting and
offset search together to form a (flow, offset) selecting step. To
efficiently determine the scheduling priority, a unified metric
Mapping Score is introduced to quantitatively describe the
impact of (flow, offset) on the network resource. To the best
of our knowledge, we are the first to improve the incremental
scheduling process.

III. SYSTEM MODEL

In this section, we build a global view of the scheduling ar-
chitecture in TSN and elaborate core models in the architecture
(i.e., switch, topology and data flow models) respectively.

A. Scheduling Architecture

As Fig. 2 shows, TSN is composed of data plane and
control plane [24]. The data plane consists of physical network
elements, i.e., TSN switches and hosts. It offers real-time in-
formation on data flows and network topology of the industrial
field to the control plane. The control plane stores global
information [25] and plans the network traffic scheduling
according to the information provided by the data plane. The
control plane is composed of 3 parts.

• Models: Topology and flow models provide mathematical
descriptions and abstraction for network topology and
data flows. The switch model specifies the forwarding
mode of data frames in CQF. The generated scheduling
plans must follow the principles in the switch model. The
detailed descriptions of these models are in the following
part of Section III.

• Scheduling Algorithm: It generates scheduling plans
which are issued to the hosts and switches in the data
plane. Section V expands the algorithm in detail.

• Constraints and Optimization Objective: Constraints re-
strict the transmission of data flows in the network.
The optimization objective is the goal of the scheduling
algorithm. The scheduling algorithm must satisfy the
constraints and achieve the optimization objective. They
are elaborated in Section IV.

B. Switch Model Supporting CQF

The frame forwarding scheme of CQF is presented in Fig. 3.
Time is divided into time slots of equal length. The frame
delivery follows two rules:

• If a switch received a frame at a time slot, the frame
should be forwarded at the next time slot to the next
hop.

• The frame delivery must be done in a time slot between
two neighboring switches.

In this way, the data transmission in the TSN can realize
bounded delay and jitter. Generally, the maximum and mini-
mum end-to-end delay of a frame can be expressed by:

maxDelay = (hopnum + 1)Tslot, (1)
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Fig. 3: Frame transmission in CQF. Time is divided into slots
with equal duration and the frames received in slot i are sent
out in slot i+ 1.

minDelay = (hopnum − 1)Tslot, (2)

where hopnum is the number of switches on the routing path
of the frame, and Tslot is the length of time slot.

The switch model supporting CQF is depicted in Fig. 4. All
the elements are synchronized in time. There are two queues
responsible for the receiving and forwarding of time-sensitive
flows for each port. At one time slot, one of the queues is
in receiving mode while the other is in forwarding mode. At
the next time slot, the modes of the two queues are reversed.
The modes of both queues are controlled by Rx GCL and Tx

GCL. As Fig. 4 shows, the contents of the GCLs are fixed
and are 0 and 1 flip over time to avoid extra computation and
configuration overhead.

C. Network Topology

The network topology in the data plane can be abstracted
as a graph G = {V,E}, which means the graph consists of
vertices and directed edges. The directed edges E represent
transmission links in the network, and the vertices V are
composed of hosts and switches, which can be denoted as
V = {H,S}. The switch’s each port hosts 8 queues, 2 of
which are used to buffer time-sensitive flows.

The host is the source and destination of flows. It generates
data flows and determines when to send it out. Each host
configures the starting time slot of each flow. When the flow
can not be scheduled due to congestion and resource overflow,
the host will not send out the frames belonging to the flow.

D. Data Flow

In TSN, the minimum sending interval between two frames
belonging to the same flow is the period of the time-sensitive
flow. The amount of data sent in each period is fixed. The
flow sends one frame in each cycle and generates data at
time 0. (A flow with several frames can be taken as multiple
single-frame flows.) We use F to denote a set of time-sensitive
flows. In F , there are n time-sensitive flows. For time-sensitive
flow fi, we can describe it using a 7-tuple consisting of data
source, destination, period, the data size of the frame within
each period, routing path, the maximum allowable end-to-end
delay, and the offset of the flow from the source.

∀fi∈F, i∈[0, n− 1],

fi = {src, dst, period, size, path, deadline, offset}. (3)

We use fi,j to represent the (j+1)th (j starts from 0) frame in
flow fi. Offset is the time when source host sends out the first
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Fig. 4: Switch model in CQF. The current time slot is T1.

frame of the flow. The sending time of frame fi,j at the source
node is fi.offset + j ∗ fi.period. In the problem formulation,
offset is the decision variable and all the other attributes of fi
is known as prior.

IV. PROBLEM STATEMENT

In this paper, we study the start time planning problem of
time-sensitive flows. If the start time of flows is not well sched-
uled, they tend to converge in certain hotspots in the network,
which causes queue overflow. In this section, we formulate
the scheduling of time-sensitive flows into an optimization
problem with four constraints and an optimization goal.

When allocating offset to time-sensitive flows, the transmis-
sion of these flows must comply with the constraints within a
period containing all the frame occurrences. This period is the
scheduling hyper period, which is the least common multiple
(LCM ) of all the periods of flow. We use Tsched to denote
the scheduling hyper period as in Eq. 4.

Tsched = LCM(F.periods) (4)

We propose the constraints and optimization goal as follows.

A. Offset Constraint

The offset constraint stipulates that the starting time of
data flow should be within its period. If not, multiple frames
of the same flow would accumulate in the host, which will
consume the limited buffer space of the host. Moreover, the
offset constraint helps reduce the searching complexity since
the search space of offset is limited to a reasonable extent.

∀f i∈F, i∈[0, n− 1]

0 ≤ fi.offset <
fi.period

Tslot
(5)

where Tslot is the length of the time slot. Since the granularity
of offset is a time slot, flow period fi.period must be divided
by the length of a time slot.

B. Time Slot Constraint

The time slot constraint restricts the maximum and mini-
mum length of a time slot. Since the unit of offset is the time
slot in CQF, we must ensure the periods of all the flows can
be divided by the length of the time slot. Consequently, the
maximum length is the greatest common divisor (GCD) of the
periods of all flows, as Eq. 6 shows.

Max(Tslot) = GCD(F.periods) (6)

According to the CQF forwarding principle, a frame must be
sent and received in the same time slot. Thus, the minimum
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length of a time slot should have enough length for finishing
frame forwarding. In the worst case, the queue is full of
frames, and all the frames must arrive at the next hop within
the same time slot at which they are sent out. The minimum
length of a time slot is expressed by Eq. 7

Min(Tslot) =
Queuelength

BW
+ hopdelay + δ, (7)

where Queuelength is the maximum amount of bytes that each
queue can hold. BW is the link bandwidth, hopdelay is the
internal processing delay and propagation delay of a switch
and δ is the clock synchronization precision. In practice,
Min(Tslot) is much smaller than Max(Tslot). Tslot is a
property of the network in CQF-based TSN and requires to
be determined as a constant in advance.

C. Deadline Constraint

In the data flow model, each flow has a deadline. If the
starting time of a flow is delayed, the flow cannot arrive at the
destination on time. To avoid such a situation, the constraint
restricts all flows arriving before the deadline.

∀f i∈F, i∈[0, n− 1]

fi.offset + hopnum(fi) ≤
fi.deadline

Tslot
(8)

where hopnum(fi) is the number of switches in the path of
flow i.

D. Queue Resource Constraints

A resource block is the queue resource on one port of a
switch at a time slot. We use Q

T (t)
S(j,k) to denote the resource

block in port k of switch j at the time slot t. Each resource
block can be occupied by multiple flows. We denote the oc-
cupation state of a resource block by a flow as O(fi, Q

T (t)
S(j,k)).

If flow fi occupies the resource block Q
T (t)
S(j,k), the value

of O(fi, Q
T (t)
S(j,k)) is 1, otherwise, it is 0. The condition for

O(fi, Q
T (t)
S(j,k)) to be 1 is shown in Eq. 9.

∀f i∈F, i∈[0, n− 1], j ∈ [0,m− 1]

∀k∈[0, Sj .Pnum − 1],∀t ∈ [0,
Tsched

Tslot
− 1]

O(fi, Q
T (t)
S(j,k)) = 1

s.t.

S(j, k) ∈ fi.path, α ∈ [0,
Tsched

fi.period
− 1]

t = (fi.offset +
α× fi.period

Tslot
+ hop(Sj , fi))mod(

Tsched

Tslot
)

(9)

where m is the number of switches in the network, and
Sj .Pnum is the number of ports in the switch j. S(j, k) is
port k of switch j. hop(Sj , fi) starts from 0 and indicates
which hop switch j is in the path of flow i. There may exist
several frames of the same flow during Tsched. α indicates
which period the frame belongs to. t is the time slot that the
flow occupies within Tsched.

TABLE I: Flow features.

Flow Size Period (slot) Routing path

f1 25 2 portA −→ portB

f2 26 4 portA −→ portC

f3 27 3 portA −→ portD

Based on the above denotation of resource block occupation
by flows, the resource constraint is expressed in Eq. 10.
M(i) represents whether the flow i could be mapped onto
the network resource or not. M(i) is 1 if the flow can be
mapped successfully. Otherwise, it is 0. This constraint states
that the sum of all the frames in the same resource block can
not surpass the queue length.

∀f i∈F, i∈[0, n− 1], j ∈ [0,m− 1]

∀k∈[0, Sj .Pnum − 1],∀t ∈ [0,
Tsched

Tslot
− 1]

n−1∑
i=0

M(i)×O(fi, Q
T (t)
S(j,k))× fi.size ≤ Queuelength (10)

In this paper, the optimization objective is maximizing the
number of successfully mapped time-sensitive flows, which is
formulated as Eq. 11. The decision variables are the offset of
each flow in the network.

Maximize
n−1∑
i=0

M(i). (11)

V. ALGORITHM DESIGN

In order to schedule flows as many as possible and achieve
load balance, we need to couple flow sorting and offset search
together and jointly consider the flow features and resource
availability to avoid flow congestion. In this section, we first
introduce Mapping Score to quantify the impact of each flow
scheduling on the network resource and explain its necessity.
Then we provide a utility analysis of coupling flow sorting
and offset search with Mapping Score. Finally, the detailed
scheduling algorithm based on Mapping Score to solve the
problem in Section IV is presented.

A. Flow scheduling with Mapping Score

To demonstrate the necessity of jointly considering both
flow features and resource availability, we take the scheduling
of three flows as an example. Table I summarizes the features
of the three flows. The queue length of switches is set to 60.

As Fig. 5a shows, the traditional greedy algorithm first sorts
flows according to their frame size. Flows taking up fewer
resources are mapped first. Thus, the flow sequence is 1⃝ f1,
2⃝ f2, 3⃝ f3. When conducting offset search, the algorithm

maps the selected flow from the largest offset and reserve the
relatively earlier time slot for the later-mapped flows.

When scheduling flows, we refer to the choice of a certain
flow and its corresponding offset (i.e., the start time from its
source) as a scheduling step. For example, assigning value 1 to
the offset of flow f2 can be depicted with (f2, 1). According
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(b) Scheduling Gantt chart with Mapping Score.

Fig. 5: The number within each rectangle represents the
sequence number of the frame, e.g., f1, 1 means the 1st frame
of flow f1.

to the traditional incremental scheduling greedy algorithm, the
scheduling steps are 1⃝ (f1, 1), 2⃝ (f2, 3). The scheduling of
flow f3 will cause resource overflow of portA at slot3, slot7
and slot11. Consequently, this algorithm can only schedule
two flows.

However, the scheduling performance will improve when
we couple flow sorting and offset search together, and jointly
consider the flow features and resource availability. We use
Mapping Score to quantify the impact of flow schedul-
ing on the network resource. When scheduling flows, we
tend to impact the network resource as little as possible
by choosing the scheduling combination (flow, offset) whose
Mapping Score is the highest. We first elaborate on the def-
inition of Mapping Score, then give the detailed scheduling
process based on Mapping Score in the example scenario.

As is mentioned in Section IV, the resource block in the
kth port of jth switch at the tth slot is denoted as Q

T (t)
S(j,k).

If a flow occupies a resource block, the value O(fi, Q
T (t)
S(j,k))

is 1, otherwise, it is 0. We define a flow set F
T (t)
S(j,k) =

{f |O(f,Q
T (t)
S(j,k)) = 1}, meaning the flow set F

T (t)
S(j,k) is

composed of flows taking up the same resource block Q
T (t)
S(j,k).

The available resource of Q
T (t)
S(j,k) is denoted as Res

T (t)
S(j,k) in

Eq. 12.

Res
T (t)
S(j,k) = Queuelength −

∑
f∈F

T (t)

S(j,k)

f.size (12)

For each combination of a flow and its possible offset (fi,
offset), there exists a Mapping Score, which can be computed
with Eq. 13.

TABLE II: Mapping Scores generated in the second schedul-
ing step.

Combination Mapping Score

(f2, 3)
60−25

26

(f2, 2)
60
26

(f2, 1)
60−25

26

(f2, 0)
60
26

(f3, 2)
60−25

27

(f3, 1)
60−25

27

(f3, 0)
60−25

27

Mapping Score =
Min Res

T (t)
S(j,k) + fi.size

fi.size

s.t.

O(fi, Q
T (t)
S(j,k)) = 1, (13)

where Min Res
T (t)
S(j,k) + fi.size is the minimum available

resource on the routing path of flow fi before fi is scheduled.
It can only be worked out after the offset of fi is determined
because we need offset to locate certain resource blocks
occupied by fi according to Eq. 9. A large Mappping Score
means that the flow makes little impact on the network. Thus,
we choose the combination with the highest Mapping Score
as the top-priority (flow, offset) to schedule.

Here we elaborate on the detailed scheduling process based
on Mapping Score in the above example. For the first step,
we compute Mapping Scores of all the possible schedul-
ing combinations. Since the available resource of all the
resource blocks is 60, a small flow size generates a high
Mapping Score. So, we select flow f1 to schedule. 0 and
1 are both possible values for the offset of f1. We choose 1 as
its offset to leave the earlier time slots for other flows. For the
second step, the Mapping Scores of all the possible combi-
nations are listed in Table II. We choose combination (f2, 2)
as the current scheduling step because its Mapping Score is
the largest. Likewise, we schedule the flow f3 and set its offset
as 2. As Fig. 5b shows, the method with Mappping Score
can successfully schedule all three flows. Under the guide of
Mapping Score, the scheduling process of the example is 1⃝
(f1, 1), 2⃝ (f2, 2), 3⃝ (f3, 2).

B. Algorithm Design based on Mapping Score

The computation of mapping time-sensitive flows onto un-
derlying queue resources is equivalent to the bin packing prob-
lem and is NP-hard [26]. The search space is

∏n−1
i=0

fi.period
Tslot

,
where n is the number of flows.

In order to reduce the complexity while improving schedul-
ing performance, we propose a Mapping Score based heuris-
tic algorithm. The proposed algorithm is shown in Algo-
rithm. 1. In each iteration, the flow selection and its offset
are determined simultaneously. We denote this combination as
(flow, offset). We choose the combination (flow, offset) whose
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Algorithm 1 Mapping Score Based Scheduling (MSS) Al-
gorithm

Input: Flow set F , Network topology G
Output: F.offset

1: Initialize available queue resource Q[port, t]
2: Initialize mapping score table Score[f, offset]
3: for i = 1 : F.num do
4: for each fi ∈ F do
5: for each offset ∈ [0, fi.period− 1] do
6: latency = count e2e latency(fi, offset)
7: if latency > fi.deadline then
8: Score(fi, offset) = −1
9: // Deadline constraint cannot be met

10: else if QueueOverflow(fi, offset,Q) == true
then

11: Score(fi, offset) = −1
12: // Resource constraint can not be met
13: else
14: Score = computeMappingScore(fi, offset, Q)
15: end if
16: end for
17: end for
18: [f, offset] = findMaxScore(Score)
19: f.offset = offset
20: f.schedF lag = SUCCESS
21: updateQueueResource(Q, f, offset)
22: Score(f, :) = −1
23: Update score table Score[f, offset]
24: end for

Mapping Score is the largest to be current scheduling step
in each iteration.

In line 4-17, the Mapping Score of each (flow, offset)
combination is updated. The Offset Constraint is satisfied in
line 5, and the Deadline Constraint is satisfied in line 6-7.
Line 10 checks whether the Queue Resource Constraint
is met. Line 14 computes the Mapping Score of each
feasible combination (flow, offset). If the Mapping Scores
of combination (flow, offset) is -1, the value of offset in the
combination is not feasible for the scheduling of flow f . After
each Mapping Score is updated, we choose the combination
with the highest score as the current scheduling step, i.e.,
the flow f is scheduled, and the starting time on its host is
set as the value offset. Then the resource pool is updated in
line 20 because of the flow scheduling. The Score table is
updated in line 23 because all the combinations of scheduled
flow f can be out of consideration in the next iteration. The
algorithm ends until there is no available flow to schedule.
This MSS heuristic algorithm generates near-optimal solutions
by fully exploiting the knowledge of both flows and resource
availability [14]. The time complexity of MSS algorithm is
O(n2) [27].

VI. EVALUATION

To demonstrate the effectiveness of the proposed algorithm,
we compare the proposed algorithm with four algorithms,

(a) Ring (b) Linear (c) Tree (d) Mix

Fig. 6: Experiment topologies. The rectangles represent
switches. The host number connecting to each switch ranges
from 1 to 3 randomly.

i.e., Naive algorithm (NV) [14], Naive Greedy algorithm
(NG) [13], Tabu algorithm (Tabu) [14] and FLJ-VB (FLJ) [12].
NV randomly chooses a flow from the flow set and schedules
it as soon as it is generated from the source. NG algorithm
first sorts flows by their frame sizes in ascending order. When
offsetting the time slot at the source, the greedy strategy of
decreasing offset is adopted. For Tabu parameters, the size
of the tabu list is 50. We set the maximum iteration and
the maximum repetition to 300 and 20, respectively. In each
iteration, 10 candidate solutions are generated. For FLJ, the
PDV-descending order is adopted.

We conduct experiments on a server with an Intel Xeon
Silver 4210R Processor (10 cores, 2.40 GHz with 13.75 MB
cache) and 252 GB RAM.

A. Experiment Setup

1) Network Setting: We conduct experiments on three
topologies: ring, linear, and tree, which are typical topolo-
gies in industry. To evaluate the scalability of the proposed
approach, we use two network scales, denoted by S1 and S2,
which consist of 7 and 15 switches, respectively, according
to typical industrial scenarios [28]. Especially, we use a
complex network topology for the S2 network to evaluate the
performance of the proposed algorithm. Fig. 6 presents the
layouts of these topologies. The number of hosts connected to
each switch is randomly selected from the set {1, 2, 3}. We
set the link bandwidth to 1000Mb/s and time slot length to
125 µs.

2) Flow Features: To evaluate the robustness of the
proposed algorithm, we use three sets of periods:[2, 7], [2, 9]
and [2, 11] time slots. (i.e., The flow period is randomly
generated from the corresponding set.) We evaluate the pro-
posed algorithm with different flow numbers, i.e., 200 and 500.
For different flow numbers, we set different queue lengths
for them. When the flow number is 200, the queue length
is set to 5 KB. When the flow number is 500, the queue
length is set to 8 KB. The queue length selection is based
on two reasons. First, Restricted queue length will decrease
the network capacity and the scheduling performance, so the
queue length can not be too short. Second, the on-chip memory
in most TSN switches is limited, so the queue length can not
be too long for cost savings [14]. The frame size is randomly
chosen from 64 to 1500 bytes. The deadlines of all the flows
are milliseconds in general. They are generated from 2 to 5
milliseconds randomly. For each parameter setting, we run the
experiment 50 times.
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Fig. 7: Success rate under different queue
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ent flow numbers.

Ring Linear Tree
Topology

30

40

50

60

70

80

90

100

Su
cc
es
s R

at
e 

(%
)

200 flows | 7 switches | period∈ [2, 9]time slots
NV
NG

Tabu
FLJ

MSS

Fig. 8: Scheduling success rate in light
traffic.
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Fig. 10: Resource utilization. It is the
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Fig. 15: Scheduling success rate in com-
plex network scenarios with a large flow
number and more switches.

B. Experimental Results

1) Impact of Flow Number and Queue Length: The
scheduling success rate with different queue lengths and flow
numbers is shown in Fig. 7. We can see that, when the flow
number in the network is fixed, the success rate grows as the
queue resource increases. When the queue length is fixed, the
scheduling success rate decreases as the flow number increases
since a large number of flows increases the probability of
congestion and conflict. In practice, field operators of the
factory should select switches with suitable queue lengths
according to the actual flow number in the network.

2) Performance of Algorithms under Different Topologies:
To qualitatively evaluate the performance of the proposed

algorithm, we use four metrics, i.e., scheduling success rate,
resource utilization, resource distribution variance, and exe-
cution time. We compare the proposed algorithm with four
algorithms (i.e., NV, NG, Tabu, and FLJ).

The scheduling success rate is the proportion of the sched-
uled flow number to the total flow number in the network.
A high scheduling success rate indicates that most flows
are scheduled successfully. Results in Fig. 8 present the
scheduling success rate of five scheduling algorithms under
different network topologies when the flow number is 200. In
this light-traffic scenario, the success rate of MSS is 31.69%
higher than that of NV on average. MSS outperforms the
FLJ algorithm by 4.57% averagely, which is state-of-the-art.
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Likewise, the scheduling rates of five algorithms when the
flow number is 500 are displayed in Fig. 9. In this heavy-
traffic scenario, the success rate of MSS is 38.10% higher than
that of NV on average. MSS outperforms the state-of-the-art
FLJ algorithm by 4.22% averagely. The MSS improves the
scheduling success rate because it couples flow sorting and
offset search together under the guidance of Mapping Score.
Meanwhile, the MSS is robust under both light-traffic and
heavy-traffic scenarios.

Resource utilization is the proportion of the allocated queues
over the total queues. A high resource utilization means the
devices are fully utilized. As Fig. 10 shows, compared with the
other four algorithms, the proposed algorithm MSS improves
the resource utilization by 30.97%, 5.11%, 4.88% and 4.10%,
respectively. This is because MSS takes resource availability
into consideration compared with NV, NG, and Tabu, and MSS
considers the flow size when sorting flows compared with FLJ.
Thus MSS avoids overusing resource blocks and outperforms
other algorithms in resource utilization.

The resource distribution variance is shown in Fig. 11. Load
balance level is measured by the resource distribution variance
over all the queues. A low resource distribution variance value
means a high load balance level, which can make sure the
hardware resource is fairly used. The average variance of FLJ
is 7.95% higher than that of MSS. This is because MSS
jointly considers resource availability and flow features with
Mapping Score while other approaches either neglect the
resource distribution or the resource consumption of flow itself
when scheduling flows.

The execution time is presented in Fig. 12. Tabu, FLJ,
and MSS take much longer time than NV and NG because
of more complex searching space. Tabu algorithm consumes
2.2× more time than MSS. The execution time of MSS is
slightly more than that of FLJ due to the computation and
sorting of Mapping Score. On average, MSS costs 18.68s
more than FLJ, which is affordable in real-time industrial
systems.

To conclude, MSS can improve the scheduling performance
while significantly reducing the execution time. Contributing
to Mapping Score, MSS can make flows take up available
resource blocks instead of aggregating to one hot spot.

3) Impact of Different Flow Periods: In this experiment,
we compare the scheduling success rate with different flow
period ranges, as shown in Fig. 13. When the flow period
is fixed at [2, 11], the scheduling success rate of MSS is
5.88% higher than FLJ. The improvement is 4.77% and 2.70%
When the flow period range is [2, 9] and [2, 7], respectively.
The period range increment leads to the explosive growth
of the hyper period, thus the search space is enlarged. The
performance promotion demonstrates the effectiveness of
MSS in the case of large search space.

4) Impact of Different Queue Length: Fig. 14 shows the
scheduling success rate of different algorithms under different
queue lengths. Different queue lengths of switches indicate
different adequacy of network resources. Fig. 14 depicts the
scheduling capabilities of these algorithms under different
network resource adequacy. We can see that, when the queue
length is less than 6K, Tabu and NG outperform FLJ, i.e.,

Tabu and NG have better scheduling capabilities in resource-
constrained scenarios while FLJ performs well in resource-
sufficient scenarios. MSS remains the best in both scenarios.
This is because the sorting policy of FLJ fails to consider the
flow size. Thus it is possible that the flows scheduled first
may have a large size and almost fill the resource block when
queue length is insufficient, resulting in the scheduling failure
of other flows. In resource-sufficient scenarios, the defect of
flow sorting in FLJ can be negligible, however, whether the
offset select considers the resource availability matters. NG
and Tabu fail to consider the most restricted resource block in
the flow path and miss the optimal offset, thus occupying the
resource block which is almost filled and hindering other flows
from being scheduled. MSS jointly considers both factors so
its scheduling capability remains the best in both scenarios.

5) Scalibility: To evaluate the robustness and scalability
of MSS, we test the performance of five algorithms under
complex scenarios as Fig. 15 shows. In the complex scenarios
with more switches and more flows, MSS outperforms FLJ
by 4.38% and it ourperforms Tabu by 5.01% on average.
Especially, the performance improvement of MSS versus FLJ
is 7.62% in the linear topology. Consequently, the MSS
algorithm can be well extended in complex scenarios.

VII. CONCLUSION

In this paper, we utilize the mutual interaction of flow
and offset to design a novel scheduling approach, which
couples flow sorting and offset search together to form a
(flow, offset) combination selecting step. Moreover, we intro-
duce Mapping Score to quantitatively describe the impact
of the combination on the network resource and propose a
Mapping Score based scheduling (MSS) algorithm to sched-
ule time-sensitive flows. The proposed MSS algorithm jointly
considers the flow features and the availability of resources
on the flow path. MSS generates (flow, offset) sequences
based on Mapping Score to achieve better load balance.
The experimental results show that the scheduling success
rate with the MSS algorithm is on average 31.69% higher
than with the Naive algorithm and 4.57% higher than the
state-of-the-art FLJ. Especially, it outperforms the state-of-
art by 7.62% in large-scale linear topologies. Meanwhile, it
saves more than half the time of the compute-intensive Tabu
heuristic algorithm. The MSS algorithm achieves great time
efficiency and scalability for complex network scenarios.
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[6] N. G. Nayak, F. Dürr, and K. Rothermel, “Incremental flow scheduling
and routing in time-sensitive software-defined networks,” IEEE Trans-
actions on Industrial Informatics, vol. 14, no. 5, pp. 2066–2075, 2017.

[7] J. L. Messenger, “Time-sensitive networking: An introduction,” IEEE
Communications Standards Magazine, vol. 2, no. 2, pp. 29–33, 2018.

[8] M. Vlk, Z. Hanzálek, K. Brejchová, S. Tang, S. Bhattacharjee, and
S. Fu, “Enhancing schedulability and throughput of time-triggered
traffic in ieee 802.1qbv time-sensitive networks,” IEEE Transactions on
Communications, vol. 68, no. 11, pp. 7023–7038, 2020.

[9] Z. Feng, M. Cai, and Q. Deng, “An efficient pro-active fault-tolerance
scheduling of ieee 802.1qbv time-sensitive network,” IEEE Internet of
Things Journal, pp. 1–1, 2021.

[10] IEEE 802.1Qbv Standard, Std. [Online]. Available: https://www.
ieee802.org/1/pages/802.1bv.html

[11] IEEE 802.1Qch Standard, Std. [Online]. Available: https://1.ieee802.
org/tsn/802-1qch/

[12] Y. Zhang, Q. Xu, L. Xu, C. Chen, and X. Guan, “Efficient flow
scheduling for industrial time-sensitive networking: A divisibility theory
based method,” IEEE Transactions on Industrial Informatics, pp. 1–1,
2022.

[13] W. Tan and B. Wu, “Long-distance deterministic transmission among
tsn networks: Converging cqf and dip,” in 2021 IEEE 29th International
Conference on Network Protocols (ICNP), 2021, pp. 1–6.

[14] J. Yan, W. Quan, X. Jiang, and Z. Sun, “Injection time planning: Making
cqf practical in time-sensitive networking,” in IEEE INFOCOM 2020 -
IEEE Conference on Computer Communications, 2020, pp. 616–625.

[15] S. S. Craciunas, R. S. Oliver, M. Chmelı́k, and W. Steiner, “Scheduling
real-time communication in ieee 802.1 qbv time sensitive networks,”
in Proceedings of the 24th International Conference on Real-Time
Networks and Systems, 2016, pp. 183–192.

[16] S. S. Craciunas, R. S. Oliver, and W. Steiner, “Formal scheduling con-
straints for time-sensitive networks,” arXiv preprint arXiv:1712.02246,
2017.

[17] W. Steiner, S. S. Craciunas, and R. S. Oliver, “Traffic planning for time-
sensitive communication,” IEEE Communications Standards Magazine,
vol. 2, no. 2, pp. 42–47, 2018.

[18] R. Serna Oliver, S. S. Craciunas, and W. Steiner, “Ieee 802.1qbv gate
control list synthesis using array theory encoding,” in 2018 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
2018, pp. 13–24.

[19] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,
M. Reisslein, and H. ElBakoury, “Ultra-low latency (ull) networks: The
ieee tsn and ietf detnet standards and related 5g ull research,” IEEE
Communications Surveys Tutorials, vol. 21, no. 1, pp. 88–145, 2019.
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