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Abstract—The robot’s mobility and intelligence have expanded
its application in recent years. Specifically, indoor tracking is
a fundamental function of public service robots in nursing
homes, hospitals, and warehouses. Existing vision-based tracking
requires visual information, which may be unavailable and
introduce privacy issues in practical deployment. To this end,
in this paper, we propose LTrack, a long-range tracking system
based on LoRa, an emerging low-power wide-area networking
(LPWAN) technology, with a single transceiver pair. Note that
commodity LoRa devices cannot estimate the angle of arrival
(AoA) of signals due to hardware limitations. We design a
virtual circular antenna array in the mobile rotating anchor via
a lightweight hardware modification to multiplex the only RF
channel in the low-cost LoRa device. The difference of time of
flight (TDoF) measured in the circular antenna array is fused
with the rotating orientation to estimate the target AoA. We also
redesign and optimize the primitive LoRa ranging engine based
on systematic analysis. Further, we present a real-time mobile
target tracking algorithm based on the Doppler frequency shift
to combat the uncertainty introduced by the target movement.
We have developed the prototype of LTrack, which consists of
a mobile rotating anchor, a LoRa tag, and a commercial robot.
The system is evaluated in both LOS and NOLS indoor scenarios.
Experiments show that LTrack supports robust tracking with a
median error of 0.12 m and 0.45 m in a 137m2 lab space and a
600m2 corridor, respectively.

Index Terms—Indoor tracking, mobile robots, LoRa, AoA
estimation.

I. INTRODUCTION

THE last decade witnessed the boost in sales value of
service robots. The market size of service robots was

12.88 billion US$ in 2019 and is estimated to reach 41.49
billion US$ by 2027 [1]. The service robot compensates for
the lack of human resources with its long working hours
and high efficiency. They have been widely deployed in
nursing homes, warehouses, airports, and hospitals. During the
current COVID-19 pandemic, the service robot helps reduce
direct human-to-human contacts and thus cuts the possible
transmission route. Unlike the traditional service robots that
are stationary, modern service robots move around to extend
their working area [2], [3]. Specifically, tracking is an essential
system function of mobile robots to follow or monitor a
target in the navigation, following, and guiding services. The
mobile service robot first gets the relative location to the target
and then plans the tracking trajectory. For example, medical
robots follow and assist doctors or nurses closely in hospitals
where the GPS signal is weak in such indoor environment due
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to signal attenuation. Thus, it is desirable to design indoor
tracking approaches for mobile robots.

Researchers have proposed various approaches to imple-
ment indoor tracking functions for mobile robots, either vision-
based, including RGB camera [4], binocular vision [5] or RF-
based, including Wi-Fi [6], Bluetooth [7], and UWB [8]. While
the vision-based approaches achieve sub-meter accuracy, they
may introduce privacy issues as the consumer face image is
collected for the identification [9]. Moreover, most vision-
based tracking approaches utilize camera images in the local
sight areas, which prevents the utility in large areas and many
invisible emergencies. In contrast, the RF-based approaches
collect the wireless signal and preserve users’ privacy. How-
ever, most RF-based approaches are not applicable in complex
indoor environments or have limited coverage due to signal
attenuation. These systems usually require prior knowledge
by ad-hoc profiling or setting more infrastructures to improve
accuracy or extend coverage [10].

Low-power wide-area networking (LPWAN) is an emerg-
ing wireless network paradigm that aims to provide long-
range ubiquitous connectivity to the Internet of Things (IoT)
devices [11]. LoRa is a representative LPWAN technology,
which operates on license-free industrial, scientific and med-
ical (ISM) bands using low-cost devices. LoRa is resilient
to noise and has a long-rang communication capability due
to its Chirp Spreading Spectrum (CSS) modulation scheme.
Because of these advantages, recently, there has been a trend
of exploiting LoRa in indoor applications, e.g., sensing [12],
[13] and localization [14]. It is interesting to investigate the
feasibility of implementing a LoRa-based tracking system. A
straightforward idea is that users can keep performing multilat-
eration to enable tracking functions. However, the timestamps
in current commercial off-the-shelf (COTS) LoRa devices do
not have sufficient resolution [15]. The users need extra efforts
and set additional software-defined radios (SDRs) to upgrade
existing infrastructure and improve the accuracy [16]. Another
approach is fusing time difference of arrival (TDoA) and
angle of arrival (AoA) to track the target [17]. Unfortunately,
the standard LoRa does not support AoA estimation due
to hardware limitations. Some recent studies propose to use
MIMO devices to enable AoA estimation at anchor side [18].
However, these designs rely on expensive SDRs like Universal
Software Radio Peripherals (USRPs), which face the same
cost issue as the multilateration approach has. Moreover, users
often set a high sampling rate of the SDRs device to increase
accuracy, generating large data files and taking lots of time to
process.

In this paper, we present LTrack, a LoRa-based indoor
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tracking system with only a single transceiver pair, which
supports in situ deployment and provides high tracking ac-
curacy (∼0.45 m). LTrack deploys an anchor (gateway) on a
mobile robot and attaches one or multiple tags (end devices)
to the tracking targets. The robot detects the environments
to avoid obstacles via a Lidar and an illumination-insensitive
depth camera, which can protect privacy [19]. Note that LTrack
is infrastructure-free, which means that it does not require
any prior infrastructure deployment. At run time, the anchor
tracks the target and navigates the robot by communicating
with the tag using LoRa. Specifically, we select 2.4 GHz LoRa
to prototype LTrack because of its ranging engine, which is
not available in sub-1 GHz LoRa chips. With a lightweight and
low-cost modification based on an SX1280 chip, we prototype
the LTrack anchor (costs 20 US$) that is 250× cheaper than a
USRP. The LTrack tag can be any SX1280-based end device.

The design of LTrack is challenging due to three practical
factors. The first challenge is the unavailability of AoA esti-
mation in COTS LoRa transceivers. Channel state information
(CSI) provides channel properties of a communication link,
which can be used for AoA estimation. Different from other
RF technologies like Wi-Fi, CSI is unavailable in COTS
LoRa devices. To empower the COTS LoRa device with AoA
estimation, we embed an RF switch to allow the LoRa chip
to access external antennas for AoA estimation (see §IV-A).
The RF chain is multiplexed in a time-division fashion. Thus,
the anchor can estimate the AoA with ranging measurements
from the external antennas. However, such an approach is
coarse-grained due to the error introduced by the waiting
time between ToF estimations. Notice that 2.4 GHz LoRa
hops among 40 subchannels pseudo-randomly to achieve a
stable estimation of the time of flight (ToF). As a result, a
ToF estimation lasts 160 ms, which contains the round-trip
time of 40 frames. The LoRa chip has to finish all ToF
estimations at the first antenna before switching to another.
During this period, the surrounding environment may change,
and the target may move, which degrades the AoA estimation
accuracy. To address this issue, we design a new ranging
pipeline for LTrack (see §IV-B) to minimize waiting time in
the antenna array and thus improve the accuracy.

The second challenge is the antenna array self-interference.
The antennas in a static antenna array block each other
and thus cause blind areas. Adding more antennas to reduce
blind areas increases the implementation cost and complexity.
Inspired by Synthetic Aperture Radar (SAR) [20], LTrack
uses a circular antenna array to emulate a “virtual array”
to eliminate blind areas. The circular antenna array rotates
and takes snapshots of received signals at different spatial
locations. Since the rotation speed and angle can be measured,
we further design an algorithm (see §V) that can jointly
estimate the target location according to snapshots.

Another challenge is the impact of target movement. Al-
though we can increase the estimation frequency at the anchor
side, the impact of target movement is unavoidable in a track-
ing system. LTrack exploits the Doppler frequency shift to es-
timate the target movement (see §VI). Specifically, we analyze
the target movement model and design a lightweight frequency
estimation algorithm. With such an algorithm, LTrack further

improves its real-time tracking performance.
Scope and Limitations: We emphasize that LTrack: (1)
Considers tracking objects in a 2-D space. (2) Achieves real-
time tracking but is affected by the moving speed of the target
(analysis in §VI and discussion in §VIII). Yet, LTrack remains
broadly applicable for most indoor tracking applications.
Evaluation and Results: The LTrack prototype includes a
LoRa anchor (gateway) and a LoRa tag (end device). We
deploy the anchor on a mobile robot and perform evaluations.
Our results show that:
• Compared with the primitive LoRa ranging engine, LTrack

improves the ranging TDoF accuracy by 302%.
• LTrack respectively achieves median errors of 4.5° and 5.72°

in LOS and NLOS AoA estimations at 50 m.
• LTrack can track a moving object with a speed up to 0.5 m/s

in real time with a 0.45 m median error.
Contributions: The contributions of this paper include:
• We for the first time demonstrate the feasibility of enabling

AoA estimation on the COTS LoRa chip with one RF
channel and optimize the ranging protocol to improve the
accuracy.

• We design a new LoRa anchor with a circular antenna array
to achieve fine-grained AoA estimation.

• We build the motion model of a moving object and propose
an algorithm to track moving objects.

• We prototype the proposed tracking system and conduct
experiments to evaluate its performance in complex indoor
environments.
The rest of this paper is organized as follows. §II introduces

the background. §III overviews the system design. §IV to
§VI presents the design of the proposed tracking system.
§VII describes the implementation details. §VIII shows the
simulation and experiment results. §IX reviews related work
and §X concludes this paper.

II. BACKGROUND

In this section, we first present LoRa primer and its ranging
engine. Then, we introduce the principle of AoA estimation.

A. LoRa Primer and its Ranging Engine

LoRa runs on the ISM bands and supports long-range
communication with low-power consumption. It is available
on both sub-1 GHz (e.g., 868 MHz in EU) and 2.4 GHz bands.
LoRa’s CSS modulation techniques empower its large network
coverage, i.e., 1-5 km in urban area and up to 25 km in rural
area. Compared with LoRa radios operating on sub-1 GHz
bands (i.e., 433 MHz, 868 MHz, 915 MHz), 2.4 GHz LoRa
has a wider bandwidth [16], which is more applicable for
ranging tasks. 2.4 GHz LoRa has 8 spreading factors (SFs)
starting from SF5 to SF12, and a variable bandwidth (BW)
range of 0.2 MHz-1.6 MHz. At run time, 2.4 GHz LoRa hops
over its 40 subchannels to avoid interference from other
radios. The bandwidth of each subchannel is 2 MHz. As a
result, the 2.4 GHz LoRa’s bandwidth ranges from 2.40 GHz
to 2.48 GHz.

Different from the sub-1 GHz LoRa chip, the 2.4 GHz LoRa
chip defines a ranging engine by measuring the ToF between
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Fig. 1. The structure of a circular antenna array. Each antenna captures the
signals for the AoA estimation. All of the antennas are arranged in a circle.

two nodes. Specifically, the anchor node sends a ranging
packet consists of preambles, a target address, and ranging
symbols for the detection, identification, and synchronization,
respectively. In the meanwhile, it starts a clock counter for
timing. When the target node receives the packet, it imme-
diately replies to the anchor node with a responding ranging
packet. Upon receiving the response from the target node, the
anchor node gets the counter number and calculates the result
with a filter (e.g., median filter). As there are 40 subchannels
in 2.4 GHz LoRa, the ranging engine keeps hopping and per-
forming ranging on each subchannel. The ranging resolution
is limited in most narrowband communications. However, the
CSS adopts wideband linear frequency modulated chirp pulses
to send the signal. As the spectrum is extensively spread,
the distance resolution of the LoRa ranging engine, which is
corresponding to one least significant bit (LSB), is given by

DLSB =
c

212BW
, (1)

where BW is the bandwidth in Hz and c is the speed of light.
Further, the distance d can be calculated by

d =
N DLSB

2
, (2)

where N is the clock counter number.
Note that the resolution is different from the accuracy. In the

noise-limited RF ToF ranging case, the ranging performance
is affected by the bandwidth, spreading factor, signal-to-noise
ratio (SNR), and the number of ranging symbols. According to
the Cramér-Rao bound for the accuracy of the LoRa unbiased
estimator, the ToF variance is bounded by

σ2
tof =

1

8π2SNR
√
MBW2SF

, (3)

where M is the number of ranging symbols, and SF is
the spreading factor. For ranging operation, the use of SF11
and SF12 is not permitted in the chipset. Similarly, the
bandwidth configuration for ranging operations is restricted
to 406.25 kHz, 812.5 kHz, and 1625 kHz.

B. AoA Estimation

The most common approach to estimate AoA is exploiting
phase information of signals (e.g., Wi-Fi, Bluetooth) [21]. The
anchor leverages an array of antennas at different locations

Fig. 2. Overview of the tracking system.

to receive the packet sent by the transceiver simultaneously.
The antennas in the array are separated by a fixed distance to
reduce the coupling, e.g., 0.5 to 1 time of the wavelength.
All antennas receive the signals from the target node and
extract the phase to estimate the AoA jointly. The signal phases
retrieved from the antennas are different since the antennas
are at different locations. For example, in a circular array
illustrated in Fig. 1, the AoA θ is estimated by a steering
vector c(θ), which can be expressed by

c(θ) =


e2πj

r cos(θ−α1)
λ

e2πj
r cos(θ−α2)

λ

...

e2πj
r cos(θ−αn)

λ

 , (4)

where αi=1,2,...,n, λ, and r are antenna orientation, signal
wavelength, and array radius, respectively [22]. Note that most
MIMO systems and Wi-Fi routers have built-in CSI analyzers
for retrieving phase information [22], [23]. However, built-in
CSI analyzers are missing in most low-power and low-cost
devices.

III. SYSTEM OVERVIEW

This section introduces an overview of LTrack system and
practical challenges. The primary goal of LTrack is to locate
and track a target, either static or mobile, according to the
received LoRa signals from an end node attached on the
target. As shown in Fig. 2, LTrack’s system architecture is
designed as follows: The anchor sends the ranging packets via
two connected antennas and collects the ranging difference.
Meanwhile, the two antennas are rotated in the robot. The
anchor estimates the TDoF between two antennas, the distance
to the target, and the corresponding array orientation. These
results are transmitted to the robot via the communication
module. Further, the robot calculates the target location and
schedules the path to move to this destination.

The rest of the paper describes the challenges of achieving
such a design. (1) Estimating the AoA: LTrack first designs a
double-antenna array, which transforms the ToF estimations at
two antennas into AoA. LTrack develops an antenna switching
scheme that allows the LoRa chip can fully utilize its TX and
RX channels simultaneously. By doing so, the LoRa chip skips
the waiting time between ToF estimations and thus improves
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(a) Antenna array structure. (b) Built-in hopping procedure. (c) Optimized hopping procedure.

Fig. 3. We redesign the standard ranging procedure in 2.4GHz LoRa. The antennas are selected by the controller via an RF switch, and the hopping procedure
is optimized to reduce the time between TDoF estimations from two external antennas.

accuracy (see §IV). (2) Eliminating blind areas: Next, LTrack
analyzes the cause of why a two-antenna array cannot well
cover a 2-D space - blind area. To eliminate the blind area,
LTrack emulates a virtual antenna array by rotating the double-
antenna array. LTrack combines measurements of multiple vir-
tual array pairs at different spatial locations to estimate target
location (see §V). (3) Estimating target movement: LTrack
then exploits the Doppler frequency shift to estimate the
target movement. LTrack implements a lightweight real-time
frequency estimation algorithm. By tracking the frequency
shift of the received TDoF signals, LTrack further improves
its tracking accuracy (see §VI).

IV. ESTIMATING THE AOA

In this section, we first empower the COTS LoRa chip
with AoA estimation capability with a lightweight hardware
modification. Then, we optimize the default ranging workflow
in the 2.4 GHz LoRa chip to improve the accuracy of AoA
estimation.

A. AoA Estimation with an Antenna Array

As mentioned before, compared with MIMO devices, LoRa
transceiver has only one RF channel for uplink and downlink
transmissions, and the signal phase information is unavailable
due to hardware limitations. Therefore, it is impossible to
utilize the phase difference to calculate AoA. To empower
LoRa transceiver with AoA estimation capability, we propose
to apply a lightweight modification on the COTS LoRa chip,
as shown in Fig. 3(a). The modification requires users to add
two antennas and an RF switch, which is easy to implement.
The two external antennas are connected to the LoRa analog
front end via the RF switch. In this way, we can exploit the
difference of the ToFs received at two antennas to calculate
the distance difference, denoted by ∆d, from the target node
to these two antennas, and further calculate the AoA, denoted
by θ.

We denote the number of antennas by n, the angle between
antenna i and antenna 1 (reference antenna) by αi, and the
radius of the circular antenna array by r. For antenna i and
antenna 1, the distance difference, denoted by ∆di1, is

∆di1 = TDoFi1 × c, i = 2, 3, · · · , n. (5)

According to Eq. 4, ∆d(θ) is a function of θ and can be
expressed as:

∆d(θ) =


2r sin(α1

2 ) sin (θ − α1

2 )
2r sin(α2

2 ) sin (θ − α2

2 )
...

2r sin(αn2 ) sin (θ − αn
2 )

 . (6)

From a circular array with n antennas, we can obtain
an accurate AoA estimation if ∆d measurement is accurate.
However, as illustrated in Fig. 3(b), the LoRa chip needs to
process signals received at antennas one by one. In SX1280, it
takes about 160 ms to finish a ranging task on 40 subchannels,
and the time is doubled in the TDoF measurement. During this
period, the target may move and the around environment may
change, and the AoA θ can not be derived from the TDoF
∆d. Thus, it is important to minimize such a waiting time.

B. Minimize Ranging Interval

We optimize the hopping process by introducing an antenna
switching scheme, in which the anchor selects TX antenna
between the hopping process, as shown in Fig. 3(c). Specifi-
cally, the anchor actively controls the RF switch to select the
connected antenna before the transmission. When a ranging
packet on the CH1 subchannel is processed from the first
antenna (antenna 1 in Fig. 3(c)), we switch to another antenna
(antenna 2 in Fig. 3(c)) to transmit a ranging packet on the
same subchannel, CH1, immediately. Then, we switch back
to the first antenna for ranging packet transmission on next
subchannel, i.e., CH2. With the antenna switching scheme, the
waiting time between two ranging operations on a subchannel
decreases from 40 ranging time to 1 ranging time.

Note that an RF switch takes extra 150 ns to select the
antenna. We reschedule the ranging process to reduce the inter-
val for each ranging task. In every subchannel, the controller
needs to concatenate the ranging parameters, including packet
type, frequency, and bandwidth, with the original frame before
transmission, increasing processing time. These parameters
are usually fixed for tracking a specific target. Hence, we
can prepare all the ranging packets in advance when the end
device is idle. In particular, the synchronization packet selects
the pseudo random frequency hopping channels between the
anchor and the target during the ranging. To this end, we
move the synchronization packet generation process that was
in-between the hopping process ahead. Further, the ranging
packets are prepared after the system booting, reducing 13
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Fig. 4. The setup of the TDoF mircobenchmark. The target is put in the
perpendicular bisector of the segment AB, making the ground-truth TDoF be
0.
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Fig. 5. Histogram with density curve of the TDoF measurement results.

and 17 commands in the ranging and hopping process, re-
spectively. From our measurements, the proposed reschedule
saves 0.218 ms.

After getting a ranging measurement, the LoRa ranging
engine calibrates the hardware delay to output final estimation.
The hardware delay is design-specific and has been profiled
in factory, which can be taken as a constant value. Since
we focus on utilizing the TDoFs for AoA estimation, the
hardware uncertainty is similar in two adjacent ranging tasks
and can be subtracted in the differential data. Thus, instead
of performing calibration during the ranging procedure, we
move the calibration at the end of AoA estimation to reduce
the estimation time. From our measurements, we save 46 ms
in an AoA estimation. Finally, the ranging interval is reduced
from 160 ms to 2.88 ms. Hence, the impacts introduced by the
target movement is mitigated a lot when calculating the TDoF
(a 0.5 m/s speed leads to 0.144 cm location change).

To understand the performance gain of the proposed de-
sign quantitatively, we conduct experiments to compare the
primitive LoRa ranging procedure and LTrack ranging pipeline
regarding to the TDoF estimation accuracy. As shown in Fig. 4,
the target is placed at the front of the antenna array 3 m
away. The mounting points of the two antennas are denoted
by A and B, which are separated by 0.2 m. The target is
put in the perpendicular bisector of the segment AB, making
the ground-truth TDoF be 0. We use the primitive LoRa
ranging procedure and LTrack ranging pipeline to measure
the TDoF for 250 times. Fig. 5 presents the histogram of the
experiment results of two pipelines. We can see that by using

the built-in ranging procedure of LoRa, the values of distance
difference ∆d varies from −0.5 m to 0.5 m. The standard
deviation is 0.171 m, which is 85.5% of the distance between
antennas. Those fluctuation results in large noise for AoA
estimation. The values of ∆d vary from −0.2 m to 0.2 m when
LTrack pipeline is used for TDoF estimation. The standard
deviation is 0.057 m, which is 33% of that by using the built-
in ranging procedure of LoRa. The results demonstrate that
the redesigned ranging procedure is efficient to mitigate the
uncertainty in TDoF estimation.

V. ELIMINATING THE BLIND AREA

Although we have enabled the LoRa chip with AoA esti-
mation capability and optimized the primitive ranging pipeline
to improve accuracy, the static antenna array cannot remove
the impact of the blind area. As shown in Fig. 2, in a static
antenna array, the antennas block each other and thus generate
the blind area. When the target is in the blind area, the
AoA estimation accuracy decreases due to the blockage. To
overcome this disadvantage, we design a “virtual array” based
on the static antenna array proposed in §IV-A. As shown in
Fig. 6, the “virtual array” is a circular antenna array consists
of two antennas. The circular antenna array rotates at a certain
speed to emulate an antenna array of numerous antennas, and
take snapshots of received signals at different spatial locations.
During the rotation, the anchor keeps sending and receiving the
ranging packet, and records the orientation and speeds of the
antenna array. The “virtual array” exploits the spatial diversity
of the antennas to eliminate the blind area.

Specifically, the two connected antennas are driven by a DC
motor in the anchor. The array orientation α(t) is collected
via a photoelectric encoder. Since the TDoF measurements
take time of once ranging when the array is rotated, the
∆d(t) needs to be synchronized with the array orientation. We
assume that the first ToF1 from antenna 1 is measured at time
t1 and the array orientation is α(t1). When the second ToF2

from antenna 2 is measured, the array is rotated to angle α(t2).
Therefore, the TDoF calculated from ToF1 and ToF2 contains
the difference caused by the orientation. The difference caused
by the rotation can be calculated by

∆dr = 2r sin(
α(t2)− α(t1)

2
) sin(θ − α(t1) + α(t2)

2
). (7)

Thus, the distance difference can be synchronized by

∆d = d2 − d1 −∆dr. (8)

In the rotation, the orientation α(t) is recorded at the
ranging time t1, t2, ṫn as α(t1), α(t2), α(tn) and the respond-
ing distance difference is ∆d1,∆d2, ∆̇dn. When the anchor
collects an array of results, the AoA can be further estimated
by

min
θ,b

h(θ, b) = ‖∆d−∆d(θ, b)‖, (9)

where b is the constant delay caused by the hardware since
the calibration is removed in §IV-B.
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Fig. 6. The basic idea of the virtual antenna array. In rotation, the two
connected antennas emulate a circular antenna array.

Fig. 7. The setup of the AoA estimation accuracy microbenchmark. We place
the target at different locations separated by 5 degrees. The distance between
the anchor and the target is 3m.

As the object function is not a concave function, this
problem is not convex. Thus, it is difficult to calculate the
close-form solution. We adopt the Stochastic Gradient Descent
(SGD) optimization [24] to find a solution for the AoA
estimation. Specifically, we randomly select a batch comprised
of a subset of measured results. The AoA θ and the bias b
are initialed and then further updated in the iteration. In each
calculation, we select a step factor µ to update the parameter
with the gradient of the object function as the follow[

θi+1

bi+1

]
=

[
θi
bi

]
− µ∇ht+1([θi, bi]

T), (10)

where ∇ht+1 is the gradient function. The result are returned
when the iteration is finished.

We conduct experiments to compare the AoA estimation
accuracy of the static antenna array and the circular antenna
array. The tag is placed at a set of points around the anchor,
and each point is separated by 5 degrees at the distance of 3
m as shown in Fig. 7. We translate the AoA estimation results
into TDoF to get a better understanding and the measurement
results are illustrated in Fig. 8. We can see that the error biased
from the ground-truth around the 90 degree and 270 degree
areas. Only few points achieves accurate result. This is because
the noise in two periods are different and even obvious in the
blind areas. The fixed antenna array causes the blind area due
to the nonlinear model and the obstacles of the antenna itself.
Thus, the performance is unrobust in practical environments.
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Fig. 8. To gain a better understanding, we translate the AoA into TDoF. In
the blind areas, direct estimation with a static antenna array bias from the
ground truth with an AoA error of more than 40 degrees.

Fig. 9. The tracking model considers the tracking in a 2-D space. The anchor
estimates the relative distance, angle, and velocity of the target.

VI. ESTIMATING TARGET MOVEMENT

Note that SAR has a fundamental assumption, the relative
position between the antenna and the target device remains
unchanged during the sampling procedure. In our tracking
system, the target may move and change its location before
the anchor finishing the estimation. Thus, the tracking perfor-
mance will be degraded. To improve the tracking accuracy,
we first model the target motion for moving objects. Then,
we implement a real-time frequency estimation algorithm to
estimate the target movement.

A. Target Motion Model

Fig. 9 illustrates the robot tracks a mobile target in a 2-
D space. We can set the start point of the robot as origin to
build a coordinate system. The location of the robot at time
t is denoted by [xr(t), yr(t)]. ϕr(t) represents the heading
orientation of the robot. When the robot tracking the target,
it needs adjust its heading orientation from time to time.
Thus, the line velocity and angular speed are denoted by
vr(t) and ωr(t), respectively. As the anchor is installed on the
robot, its location and velocity are equal to the robot’s. Note
that the circular antenna array rotates at a certain speed, the
orientation of the circular antenna array and its rotation speed
are denoted by αg(t) and ωg(t), respectively. Similarly, the
target location and velocity are denoted by [xm(t), ym(t)] and
vm(t), respectively. Specially, the anchor need to estimate the
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target relative velocity, as illustrated in Fig. 2. We decompose
the target velocity vm into tangential velocity va and radial
velocity vb. The radial velocity vb to the anchor can be
calculated from the ranging results. The tangential velocity
va is proportional to the distance d and the angular velocity
ωm:

va(t) = ωm(t)d(t). (11)

Note that the observed difference signal frequency ωo in the
anchor is corrected to the antenna rotation speed ωg and
the target angular speed ωm. According to the Doppler shift
model, ωm can be calculated by

ωm(t) = ωg(t)− ωo(t). (12)

Therefore, we can calculate the target velocity based on the
observed signal frequency difference.

B. Real-time Frequency Estimation

As the antenna array rotation frequency can be obtained
from the anchor, we need to estimate the observed distance dif-
ference frequency for real-time tracking. The time-frequency
features of non-stationary signals have been widely investi-
gated in the health monitoring, radar systems, etc. Specifically,
the continuous wavelet transform (CWT) is a popular method
that can calculate the time-frequency features. When the
signals s(t) are sampled, the time-frequency coefficients can
be obtained via the CWT calculation. As the wavelet scalar
is specified as positive, the negative frequency would be lost
in the calculation. Thus, we select the anchor frequency that
is bigger than the target’s velocity. Hence, the coefficients can
be calculated as follow

F (t, f) = cwt(∆d(t)), (13)

where F is coefficient function of the frequency and time. we
further extract the time-frequency features ωo(t) via wavelet
ridge detection from the coefficients F (t, f).

Based on the frequency estimation, we can calculate the
real-time velocity of the target. Thus, we further estimate the
real-time AoA of the target via the time-frequency features
instead of the motion prediction (assuming the target track in
a specific mode with either constant speed or acceleration is
not robust for random moving) [25]. When the target track
starts from (ϕ(t0), d0) and arrive at (ϕ(t1), d1), the AoA θ(t)
can be expressed as follow

θ(t) = θ0 +

∫ t

t0

ωm(t)dt. (14)

Thus, the distance vector can be modeled with the time-
frequency features and expressed as

∆d(θ(t)) =


2r sin(

αt1
2 ) sin (θ(t1)− αt1

2 )
2r sin(

αt2
2 ) sin (θ(t2)− αt2

2 )
...

2r sin(
αtn
2 ) sin (θ(tn)− αtn

2 )

 . (15)

Correspondingly, the real-time AoA is estimated by

min
θt0 ,b

h(θt0 , b) = ‖∆d−∆d(θ(t), b)‖. (16)

Algorithm 1: Tracking optimization

Input: maximum times of iteration itermax, iterative
threshold τ , the step factor µ, the distance
threshold d.

Output: the target node location p̃
Start rotating the antenna array and record its

orientation αg(t), its rotation speed ωg(t), the robot
location pr, the robot orientation ϕr, and the robot
rotation speed ωr;

Initialize iterative error eiter = τ , θ = θ0,b = b0;
while dt ≤ d do

Initialize iter = 0;
collect new ranging result ∆d(t);
Calculate θ(t) via (13) and (14);
while iter ≤ itermax do

Select m samples θm ∆dm random from the
results;

Calculate ht = h(θ,b) via (16);
Update θ and b via (10);
if ht − ht+1 ≤ τ then

θ = θt+1;
b = bt+1;
break ;

end
ht+1 = ht;
iter = iter + 1;

end
Calculate the target relative location p̃ via (θ, d)

and move to this destination;
end
return p̃;

Obviously, this objective function optimization is similar to
the static AoA calculation. Thus, we estimate θ(t) based on the
iterative method in Sec. IV and design the tracking algorithm
as illustrated in Algorithm 1. To track a moving target, the
robot estimates its relative real-time location and schedules the
path to move to the destination. Specifically, the mobile anchor
keeps sending the ranging requests and measuring the rotation
angle in the tracking. The ranging difference ∆d(t) and the
corresponding angle ϕ(t) are recorded in a measurement
queue. As the target may moves in the tracking, the target
speeds are first estimated via the Doppler shift. Further, the
real-time AoA is calculated in the stochastic gradient descent
optimization, during which the m random samples from the
results are selected in each iteration until the error is less than
the threshold or the iteration is finished. When the real-time
AoA is calculated, the robot selects a reachable path to follow
the moving target’s location.

VII. IMPLEMENTATION

As shown in Fig. 10, we implement a prototype of LTrack
consists of three components, including a tag, an anchor, and
a firmware for the commercial mobile robot. The tag can
be attached to static or moving objects. The anchor contains
a circular antenna array that is installed on the robot. The
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(a) Hardware implementation. (b) Firmware framework.
Fig. 10. Hardware implementation and firmware design of the LTrack system on a robot.

architecture of the firmware is shown in Fig. 10(b). When the
anchor needs to track the target, the result is sent to the robot
controller via a wireless serial port for the target tracking.
We developed the tracking firmware on the robot controller
platform (Linux-armv7hf) to listen for the ranging result and
calculate the destination location. The robot keeps tracking
and selects a new path to move to the target when the result
is updated.

Tag: The LTrack tag needs to be attached to the tracking ob-
jects and only sizes 4 cm×10cm because it only has essential
components for communication and tracking. We simplify the
hardware design to save power and extend battery life. The tag
uses an ultra-low-power microcontroller STM32L476 and an
SX1280 LoRa chip. The tag transmits and receives messages
or responses to ranging packets sent by the anchor. Note that
our design is compatible with the standard frequency hopping
protocol. Thus, any devices that support 2.4 GHz LoRa ranging
can serve as the tag. We choose SX1280 to prototype our
system due to its wide availability. The cost of a LTrack tag
is about 12 US$.

Anchor: The LTrack anchor runs the proposed ranging tasks
and coordinates with the robot through wireless serial ports.
The anchor is equipped with a circular antenna array with two
omnidirectional antennas. Follow the design in §IV-A, the two
antennas are separated by 0.2 m. We connect the two antennas
to a HMC241 RF switch to multiplex the single RF channel
of the SX1280 LoRa chip. We install those components on
a rotary board that is driven by a DC motor. The angle of
rotation is recorded via a photoelectric rotary encoder. The
speed of rotation is controlled by a PID controller that drives
the DC motor with pulse-width modulation. The cost of a
LTrack anchor is about 20 US$.

Robot firmware: To apply the LTrack system on a real
robot, we develop a new robot firmware. As illustrated in
Fig. 10(b), the firmware has a communication module, a target
localization module, a tracking module, and an interaction
module. The communication module bridges the LTrack an-
chor and the robot controller via wireless serial ports. The
target location module performs real-time AoA and frequency
estimations and sends the results along with the ToF estimation
results to the tracking model. The tracking module fuses the
results and schedules the tracking path. The interaction process
the voice command from the user to identify which LTrack
tag to track. In our settings, the firmware is running on a
Khadas VIM3 single-board computer, which belongs to the
commercial robot.
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Fig. 11. LOS AoA estimation errors in different ranges.

VIII. EVALUATION

In this section, we conduct practical experiments in complex
indoor environments to evaluate the performance of LTrack
system. We also demonstrate the deployability of apply our
system in a large indoor space through simulations.

A. Indoor Experiments

We first evaluate the AoA estimation accuracy in LOS and
NLOS scenarios, and then the overall tracking performance in
different environments with the prototype is described in §VII.

1) LOS AoA Estimation: Setup: The bandwidth and the
spreading factor of the LoRa are set to 1625 kHz and SF5,
respectively. The transmitting power of the tag and the anchor
is 12.5 dBm. The rotation speed of the circular antenna array
is 40 degree/s. We place the LTrack tag away from the LTrack
anchor at different distances, i.e, 40 m, 50 m, and 60 m. As
shown in Fig. 12, the anchor is placed on a tripod at the
same height of the target and starts the estimation from
different orientation. For each distance setting, we let the
anchor estimate the AoA of the tag 200 times.
Results: Fig. 11 shows the CDF of AoA estimation error when
tracking the tag located at different distances with LOS. The
LTrack anchor is able to track the tag with a median error
of 2.4 degrees when they are 40 m apart from each other. The
LTrack achieve AoA estimation errors 4.5 degrees at 50 m, and
5.2 degrees at 60 m. We can see that AoA estimation error
increases with distance. This is because the signal attenuates
after the long distance propagation. We also notice that the
estimation accuracy are similar at 50 m and 60 m, where their
median errors differ by 0.7 degrees. In particular, near 85% of
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Fig. 12. LOS and NLOS AoA estimations.
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Fig. 13. NLOS AoA estimation error with blockage of different obstacles
50m away from the anchor.

estimation errors are less than 5 degrees at 40 m. The 5 degrees
AoA error can be translated into a 3.5 m (40 m∗tan5°) distance
from the actual location of the tag. The performance will
improve as the robot moves towards the target, and thus has
a shorter distance.

2) NLOS AoA Estimation: Setup: When the robot is track-
ing an object, the signal path between the anchor and the tag
may be NLOS. Thus, we place the tag behind the obstacle to
block the signal path. As shown in Fig. 12, we use three kinds
of obstacles to create NLOS scenarios, including a foam board,
a wooden table, and a concrete pillar. The distance between
the anchor and the tag is 50 m. For each type of the obstacle,
we perform the AoA estimation for 200 times. The parameters
of LoRa radio are same with §VIII-A1.
Results: Fig. 13 presents the CDF of AoA estimation er-
ror when different types of obstacles block the signal path.
LTrack respectively achieves a median AoA estimation er-
ror of 5.72 degrees, 5.83 degrees, and 8.49 degrees, with the
blockage of the foam board, wooden table, and concrete pillar.
Compared with the LOS scenario, the performance of AoA
estimation degrades in NLOS settings. The NLOS results meet
our expectations because the signal attenuates significantly
due to reflections, scattering, and diffraction. We find that the
foam and wooden obstacles have fewer negative impacts on
the AoA estimation performance because the LoRa signal can
easily penetrate these obstacles. Nevertheless, the performance
degradation caused by NLOS paths can be mitigated by the
fact that the direct signal path between the anchor and the tag
changes with the robot’s movement.
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Fig. 14. The tracking experiment in an indoor lab space. The robot begins
tracking at (0, 0) and finishes at (3.8, 10).
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Fig. 15. Obstacles in the lab and the tracking error.

3) Tracking in a Lab Space: Setup: We evaluate the
tracking performance of LTrack in a 137 m2 lab space. Fig. 14
shows the floor plan of the lab. The lab has a smart manu-
facturing testbed with many metal devices (e.g., robot arms)
and many desks with PC or personal staffs on them, as shown
in Fig. 15(a) and Fig. 15(b), respectively. The user holds the
LTrack tag in hand and walks naturally along a preset path,
which has been marked in red in Fig. 14. The anchor and
the robot estimate the tag location to follow the user. The
parameters of LoRa radio are consistent with §VIII-A1.
Results: The dashed blue line in Fig. 14 represents the
tracking trajectory of the robot. We compute the tracking
error according to the euclidean distance between the robot’s
tracking trajectory and the ground truth. Fig. 15(c) presents
the CDF of the tracking error. The LTrack system achieves a
median error of 0.12 m and an 80 percentile error of 0.27 m.
During the tracking, we set a safe distance (i.e., 1 to 2 m)
between the target and the robot as the robot may deviate
from the ground-truth trajectory.

4) Tracking in a Corridor: Setup: We further conduct
tracking experiments in a corridor sized 10 × 60 m2. Fig. 16
shows the floor plan of the corridor. There are many concrete
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Fig. 16. Tracking experiment in a corridor. A person holds the tag in nature
and walks at a speed of 0.3m/s.
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Fig. 17. Tracking experiment in a corridor. A person holds the tag in nature
and walks at a speed of 0.5m/s.

pillars in the corridor. We adopt the same setting in §VIII-A3,
except the user walking speed. The user walks along the
corridor at speeds of 0.3 m/s and 0.5 m/s.
Results: Fig. 16 and Fig. 17 illustrate the tracking results at
different user walking speeds. Fig. 18 presents the CDFs of
the tracking errors. We can see that the tracking error increases
when the user walks at a faster speed. LTrack estimates
the tag’s velocity based on discretely collected samples at
a certain frequency instead of continuously sampling. The
discrete sampling cannot capture some motion features when
the tracking target moves rapidly. The LTrack system still
achieves sub-meter tracking accuracy. The median errors at
the speed of 0.3 m/s and 0.5 m/s are 0.24 m and 0.45 m,
respectively.

B. Deployability Investigation

Based on our system model and data traces retrieved from
experiments in §VIII-A, we investigate the deployability of the
LTrack via simulations. We model the signal quality based on
real RSSI measurements at different distances. The path-loss
model is fitted as RSSId = −28.31∗log10(d)−26.96. Further,
the SNR is derived from the RSSI as SNR = RSSI− (−90).
The antenna rotation speed and the ranging period are the same
as experiments before.
Distance: The LoRa signal attenuates with distance, which
impacts the performance of the AoA estimation. To understand
how distance affects the AoA estimation accuracy, we run
simulations at different distances. The tag is apart from the
anchor with the distance of 50 m, 100 m, and 200 m. For
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Fig. 18. Tracking errors with different walking speeds.
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Fig. 19. LTrack AoA estimation performance at different ranges.

each distance, we collect 200 estimation values, and the CDF
is illustrated in Fig. 19. The median AoA estimation errors
in 50 m, 100 m, and 200 m are 4.3 degree, 5.6 degree, and
7.1 degree, respectively. We find that the simulation results at
50 meters well matches our experimental results. In the path-
loss model, the signal attenuates slowly when the distance
increases. For example, the RSSI decreases 22 dBm when the
distance changes from 10 m to 60 m. But it just attenuates
5 dBm when the the distance changes from 100 m to 150 m.
Thus, even the distance is 200 m, the AoA estimation median
error is still less than 10 degree, which is sufficient for the
robot to move close to the target. As the robot is approaching
the target, the AoA estimation accuracy increases and will be
stable.
Scalability: To investigate the scalability of the LTrack
system, we extend the tracking area to a 100× 200 m2 space.
As shown in Fig. 20, the target starts from the point (0, 50)
with a 1 m/s moving speed. The robot may keep a safe distance
between the target and itself. Thus, we let the robot track the
target with a safe distance of 4-6 m, 6-8 m, and 8-10 m in
three settings. Fig. 21 presents the CDF of the tracking error.
The median errors of tracking distances of 4-6 m, 6-8 m, and
8-10 m are 0.45 m, 0.55 m, and 0.72 m, respectively. Although
the safe distance impacts the performance, the LTrack system
still achieves an 80 percentile error of 1.03 m in the 20000 m2

indoor space. These results indicates that the LTrack system is
feasible to track a target with different safe distance require-
ments in a large indoor space.

IX. RELATED WORK

Related work can be broadly categorized as follows:
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Fig. 20. Tracking simulation in a large indoor space with different safe
distance settings.
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Fig. 21. Tracking errors with different safe distance settings.

LoRa localization: LoRa has been studied for both indoor
or outdoor localization due to its features of low power
consumption and long communication range. Recent studies
have proposed multiple methodologies to exploit LoRa radios
for localization, including RSSI-based (fingerprinting and path
loss model) and TDoA-based. The path loss model is mainly
applicable in outdoor environments. For example, the SateLoc
system [26] recognizes the land-cover types on the signal paths
by identifying the satellite images, and achieves a median
localization error of 47.1 m. However, it is challenging in the
indoor environment due to signal reflections and attenuation
caused by walls and other barriers. Although location finger-
printing with RSSI can achieve sub-10 m accuracy in an indoor
environment, it needs a blanket process of fingerprinting at
many, or even all locations. Moreover, the RSSI fingerprints
face an aging issue [15]. Several studies have investigated
the feasibility of adopting TDoA-based approaches to localize
LoRa end devices. However, the localization accuracy is
limited by the resolution in most sub-1 GHz LoRa devices.

To improve localization accuracy, researchers exploit
bandwidth combination techniques to increase bandwidth.
OwLL [16] aggregates TV whitespaces and ISM bands by al-
lowing LoRa end device hopping multiple frequencies. OwLL
computes the location of the end device after integrating TDoA
results from multiple base stations. Besides these aforemen-
tioned works on sub-1 GHz, a study [27] shows that the new
generation LoRa, which operates on 2.4 GHz bands, performs
well in outdoor localization.
RF-based indoor tracking: Enabling robots to track and
follow objects in indoor environments is a fundamental task

in robotics. Researchers have exploited various RF signals
to implement the indoor tracking system, including RFID,
BLE, ADS-B, UWB, and Wi-Fi. These tracking systems can
be realized through a range of wireless signal characteristics,
including AoA, ToF, and signal amplitude (RSSI).

According to the infrastructure requirement, prior works
on RF-based indoor tracking can be further divided into two
categories, i.e., infrastructure-based and infrastructure-free.
Infrastructure-based systems require users to set up additional
devices as infrastructure. For example, using multiple Wi-
Fi routers to locate a target has been studied extensively
in the past two decades. These systems achieve excellent
performance with a few millimeters accuracy in localization.
However, they adopt a dense deployment strategy to cover
a large area and thus increase the cost to achieve such high
accuracy. Moreover, users need to fine-tune the devices that
severing as infrastructure, including the location, orientation,
and antenna separation, which requires expertise and extra
effort [28], [29].

In contrast, infrastructure-free tracking systems take advan-
tage of easy deployment, which does not require prior deploy-
ment, or leverage existing devices, e.g., Wi-Fi APs [6], [30]–
[33]. While using existing devices mitigates the cost issue,
the scalability of these systems is restricted. For instance, the
field hospital may not have enough time to install Wi-Fi APs
in response to COVID-19 emergencies. Thus, it is desirable
to have a tracking system that supports on-site deployment.

Antenna array emulation: Antenna array has been widely
adopted in wireless localization due to its capability of beam
steering. To reduce the number of antennas in an antenna
array, researchers proposed to use SAR, which allows a
single-antenna device to emulate an antenna array. In SAR,
the antenna moves along a particular trajectory and takes
snapshots of received signals at multiple spatial locations.
Researchers have applied SAR on many RF sources for device
localization, e.g., RFID [34], [35].

The most related work to us is Ubicarse [30], which enables
handheld devices to emulate antenna arrays. Ubicarse uses
readers of motion sensors to recover the trajectory between two
signal snapshots. Note that LTrack faces different challenges
in empowering robots tracking with LoRa. First, the LoRa
anchor does not provide phase information like Wi-Fi cards.
Second, the relative position between the antenna and the
target keeps changing in a tracking system, which causes errors
in estimation.

Summary: The main task of LTrack is tracking, which is
orthogonal to most localization applications. An important
assumption in many LoRa localization systems is the target
is static or quasi-static. However, this assumption does not
stand in a tracking system. Moreover, the resources for signal
processing and data storage are unavailable or expensive on
a mobile robot, making it difficult to translate the existing
localization systems into tracking systems. To the best of our
knowledge, LTrack is the first real-time tracking system based
on LoRa.
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X. CONCLUSION

This paper presents LTrack, a system that allows mobile
robots to perform indoor tracking using 2.4 GHz LoRa signals
without prior deployed infrastructure. LTrack enables LoRa
devices to estimate AoA and track moving objects by a set
of hardware and software designs. We develop an LTrack
prototype system on a mobile robot. Experiments show that
LTrack can track a moving object with decimeters level
accuracy. LTrack offers an infrastructure-free, low-cost, and
lightweight approach for mobile robots to track objects in the
indoor environment.
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