
IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 7, NO. 4, DECEMBER 2023 2153

Toward Scalable and Efficient Hierarchical Deep
Reinforcement Learning for 5G RAN Slicing

Renlang Huang, Student Member, IEEE, Miao Guo , Student Member, IEEE, Chaojie Gu , Member, IEEE,
Shibo He , Senior Member, IEEE, Jiming Chen , Fellow, IEEE, and Mingyang Sun , Senior Member, IEEE

Abstract—As an emerging and promising network paradigm,
network slicing creates multiple logical networks on shared
infrastructure to provide services with customized Quality-
of-Service (QoS) for heterogeneous devices and applications.
However, network complexity and service heterogeneity pose a
huge challenge in achieving optimal performance and ensuring
stringent QoS requirements. In this paper, we design a hierarchi-
cal deep reinforcement learning based 5G radio access network
slicing framework to achieve scalable and efficient resource allo-
cation. By decomposing the resource allocation problem into a
slice-level task and several user-level tasks, the proposed frame-
work tackles each task with an agent, thus conquering insufficient
exploration and achieving scalable management. Knowledge
transfer and progressive learning are employed to improve train-
ing efficiency and stability, respectively. We apply collaborative
training to eliminate distribution mismatch by refining value
approximators and policies of agents alternately. Extensive exper-
iments show that the proposed framework can learn effective
resource allocation policies stably and efficiently and outper-
form other methods in network utility maximization and QoS
assurance, which improves the network utility by 25% and 8%
compared with the random strategy and the ADMM strategy,
respectively. Furthermore, we validate that our framework is
more robust to changes in network traffic conditions including
network congestion.

Index Terms—Deep reinforcement learning (DRL), hierarchi-
cal reinforcement learning (HRL), network slicing (NS), radio
access network (RAN), industrial Internet of Things (IIoT).

I. INTRODUCTION

AS AN emerging and promising networking paradigm,
Industrial Internet-of-Things (IIoT) has revolutionized

industrial operation and empowered intelligent manufacturing
via ubiquitous interconnection and interaction among massive
machines, platforms, and people. Based on broad perception
and service, IIoT enables industrial data modeling, auto-
mated analysis, and intelligent decision-making through deep

Manuscript received 13 July 2022; revised 9 March 2023 and 3 July 2023;
accepted 9 July 2023. Date of publication 13 July 2023; date of current version
22 November 2023. This work was supported in part by the National Key
Research and Development Program of China under Grant 2020YFB1708700;
in part by the National Science Foundation of China (NSFC) under Grant
U1909207; in part by NSFC through the Autonomous Intelligent Unmanned
Systems under Grant 62088101; and in part by the Fundamental Research
Funds for the Central Universities under Grant 226-2022-00107 and Grant
226-2023-00111. The editor coordinating the review of this article was X. Ge.
(Corresponding author: Chaojie Gu.)

The authors are with the State Key Laboratory of Industrial Control
Technology, Zhejiang University, Hangzhou 310027, Zhejiang, China
(e-mail: renlanghuang@zju.edu.cn; gm_oct@zju.edu.cn; gucj@zju.edu.cn;
s18he@zju.edu.cn; cjm@zju.edu.cn; mingyangsun@zju.edu.cn).

cooperation with Artificial Intelligence (AI). With the rapid
development of the fifth-generation (5G) mobile network, IIoT
can support various emerging scenarios in vertical indus-
tries including intelligent manufacturing [1], smart cities [2],
intelligent transportation [3], and collaborative sensing [4].

With the sustained growth of wireless devices and emerging
applications, the 5G network needs to satisfy different service
levels in diversified application scenarios, mainly including
enhanced mobile broadband (eMBB), massive machine-type
communications (mMTC), and ultra-reliable and low-latency
communications (URLLC). As a prospective solution, network
slicing (NS) has been proposed to support increasing het-
erogeneous user devices and personalized service require-
ments. Network slicing system creates multiple isolated log-
ical end-to-end networks on shared physical infrastructure,
realizing independent management, diversified service sup-
port, and enhanced data privacy. Technically, network slicing
is supported by Software Defined Networking (SDN) and
Network Function Virtualization (NFV) [5], abstracting physi-
cal resources as virtual resources and packaging network func-
tions as virtual machines or containers, i.e., virtual network
functions (VNFs). Network slices chain multiple VNFs and
configure virtual resources to provide customized services with
personalized QoS requirements. 5G network slicing archi-
tecture mainly includes core network slicing, radio access
network (RAN) slicing, and end-to-end slicing [6]. In this
paper, we focus on RAN slicing, which can merge multi-
dimensional cloud and network resources/functions provided
by multi-access edge computing (MEC) at the network edge
for customized service provision and personalized service-
level assurance, alleviating the burden of backhaul and core
networks [7]. Specifically, we aim to ensure QoS requirements
and optimize network resource utilization of the 5G RAN
slicing system through dynamic resource allocation.

Researchers have proposed optimization methodologies to
conquer the resource allocation problem in network slicing,
but conventional optimization algorithms, including convex
optimization and nonlinear programming, fail to accommo-
date to high complexity and flexibility of 5G networks [8].
Additionally, these model-based optimization techniques are
not applicable for time-varying communication networks
either, which cannot be modeled precisely. In contrast, deep
learning is regarded as a promising approach to satisfy
the demands of network slicing management. Deep neu-
ral networks (DNNs) have drawn widespread attention in
modeling network performance, traffic, and complex behavior

https://orcid.org/0000-0002-7940-5590
https://orcid.org/0000-0003-2153-811X
https://orcid.org/0000-0002-1505-6766
https://orcid.org/0000-0003-3155-3145
https://orcid.org/0000-0002-5790-5025

2154 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 7, NO. 4, DECEMBER 2023

patterns [9], while reinforcement learning (RL) turns out to be
an efficient approach to optimal network management since
it can learn smart and complicated multi-step decision poli-
cies during interaction with the network environment [10].
Deep reinforcement learning (DRL) integrates DNN into RL
to approximate the action-value function and parameterize the
sophisticated policy, thus implicitly modeling the dynamics
of the environment and accommodating the large state space
size and action space size. Deep reinforcement learning has
showcased its strength in networking, which can automatically
mine information from the actual performance of past deci-
sions to optimize its control policy for the characteristics of the
network, without using any pre-programmed control rules or
mathematical models about the operating environment and the
specific task at hand [11]. Recent works have exploited model-
free DRL-based resource optimization in network slicing [12].
As the state dimension and action dimension increase due to
the network complexity and resource diversity, it is difficult
for single-agent DRL to explore the environment sufficiently
and stably converge to a well-trained policy.

To this end, we decompose the resource allocation problem
in network slicing as two-level sub-problems and further pro-
pose an efficient and scalable hierarchical deep reinforcement
learning (HDRL) framework as a solution. Since each sub-
problem corresponds to lower-dimensional state space and
action space, hierarchically distributed agents of the proposed
HDRL framework can explore the environment independently
and sufficiently. Since the action space is continuous in our
problem formulation, we adopt twin delayed deep determin-
istic policy gradient (TD3) [13] to handle each sub-problem.
As an actor-critic architecture, TD3 evaluates the action value
(i.e., Q value) by modeling network performance with the
critic networks and guides the actor network to optimize the
policy. Additionally, existing DRL-based solutions pay little
attention to scalability and learning efficiency. As we rela-
tively independently optimize the resource allocation policies
for each network slice, our HDRL framework leads to more
scalable and flexible network slicing management. In this
paradigm, user-level allocation policies for single slice man-
agement can share knowledge with each other through knowl-
edge transfer and parameter fine-tuning to greatly improve
training efficiency, thus enabling rapid learning and deploy-
ment of new network slices. A series of numerical experiments
validate the effectiveness and efficiency of our framework,
which has improvements of 25% and 8% relative to the
random feasible searching strategy and the state-of-the-art
ADMM strategy [14] in network utility, respectively.

To summarize, the main contributions of this paper are:
• We formulate the dynamic resource allocation problem in

RAN slicing as maximizing network utility while ensur-
ing customized QoS requirements, which is decomposed
as slice-level and user-level resource allocation problems.

• We propose a scalable hierarchical deep reinforcement
learning-based network slicing framework to solve the
two-level constrained optimization problems in the highly
dynamic 5G RAN environment, overcoming insufficient
exploration and brittle convergence in high-dimensional
continuous action space.

• We design a four-stage training pipeline for our frame-
work. The convergence and efficiency are validated by
numerical experiments. Compared with existing methods,
our approach obtains higher utility in various network
traffic scenarios while satisfying QoS requirements.

The rest of this paper is organized as follows. Section II
reviews the related works. Section III introduces the RAN
slicing architecture and formulates the resource allocation
problem. Section IV decomposes the problem into slice-level
and user-level resource optimization and proposes an HDRL
framework and a four-stage training pipeline. Section V eval-
uates the performance of our framework. Finally, Section VI
concludes the paper.

II. RELATED WORK

In this section, we introduce optimal resource allocation
in network slicing in Section II-A and deep reinforcement
learning techniques in Section II-B.

A. Optimal Resource Allocation in Network Slicing

Currently, existing works for network slicing management
are dedicated to resource allocation problems. Shi et al. [10]
applied Q-learning to maximize network slicing utility in terms
of diversified user requests via dynamic resource assignment.
Liu et al. [14] proposed an alternating direction method of
multipliers (ADMM) solution to solve a series of sub-problems
in optimal resource allocation, integrating convex optimization
and deep reinforcement learning. Hua et al. [15] proposed a
Wasserstein generative adversarial network (WGAN) empow-
ered dueling deep distributional Q-network to estimate the
Q value distribution, which is efficient in managing radio
resources in RAN slicing. Wang et al. [6] proposed a novel
DRL approach named twin-actor Deep Deterministic Policy
Gradient (DDPG) to jointly optimize communication, com-
puting, and caching resources allocation in multi-access edge
network slicing at the slice level and the user level. The
proposed approach can maximize network utility while ensur-
ing QoS. Dong et al. [16] designed a novel DRL-based
framework for joint optimization of network routing con-
trol and dynamic resource management. They integrated a
graph convolutional network (GCN) with differentiable pool-
ing into DRL to capture non-Euclidean topology information
and graph-structured network status. Wu et al. [17] proposed
a DRL-based constrained learning-driven dynamic RAN slic-
ing framework for service-oriented vehicular networks. This
hierarchical optimization framework formulates the RAN slic-
ing as a constrained stochastic optimization problem, where
DRL is applied to optimize resource allocation at the outer
layer while convex optimization is applied for workload dis-
tribution optimization at the inner layer. Naeem et al. [12]
proposed a digital twin-empowered network slicing frame-
work with a graph neural network (GNN) and distribu-
tional deep Q-networks integrated for feature embedding
and resource allocation, respectively. Their simulation exper-
iments illustrate that representation learning with GNN can
promote DRL.

HUANG et al.: TOWARD SCALABLE AND EFFICIENT HIERARCHICAL DEEP REINFORCEMENT LEARNING 2155

Most of these existing studies focus on the dynamic resource
allocation problem in network slicing and investigate the appli-
cation and expansion of deep reinforcement learning solutions
in network management. In this paper, we further extend these
ideas and introduce multi-agent hierarchical deep reinforce-
ment learning as a novel framework for 5G RAN slicing,
which is efficient in solving model-free decision-making prob-
lems with high-dimensional continuous state space and action
space. An independent and scalable slice management strategy
is also enabled under this framework.

B. Deep Reinforcement Learning Techniques

Model-free DRL has gained great popularity ever since it
achieves excellent performance on sequential decision-making
tasks, e.g., game playing [18], [19] and robotics [20], [21].
Mnih et al. [18] proposed Deep Q-Network (DQN) inte-
grating DNN into Q-learning as action-value (i.e., Q value)
approximation adapted to larger action space and state space.
This off-policy algorithm also introduced experience replay
to achieve greater data efficiency and reduce sample cor-
relations, as well as a target network to enhance stability.
However, DQN suffers from the overestimation of Q value
since greedy actions are chosen for target Q value estimation.
Van Hasselt et al. [19] proposed double DQN to address the
overestimation by decoupling action selection and value esti-
mation with double Q-networks. Wang et al. [22] proposed
dueling DQN to decompose Q value estimation into separate
estimates of state value and action advantages. These value-
based algorithms specialize in high-dimensional state space
and discrete action space.

Unlike value-based algorithms, policy-based algorithms can
handle continuous action space. Vanilla policy gradient algo-
rithm [23] directly updates a policy network via Monte-Carlo
sampling, suffering from sampling inefficiency, high vari-
ance and noisy gradients. Actor-critic algorithms integrate
critic networks for value estimation and actor networks for
action selection. Mnih et al. [24] proposed Asynchronous
Advantage Actor-Critic (A3C) that estimated action advan-
tage and replaced experience replay with parallel multi-agent
exploration to improve stability and efficiency while involving
far less computational resource. Schulman et al. [25] proposed
Trust Region Policy Optimization (TRPO) to improve the pol-
icy monotonically by constraining the Kullback-Leibler (KL)
divergence of the new policy from the old one in a reli-
able range. To reduce the computational complexity of TRPO,
Schulman et al. [26] proposed Proximal Policy Optimization
(PPO) to optimize a clipped surrogate objective or an adaptive
KL-penalized objective instead. Lillicrap et al. [27] proposed
DDPG by integrating DQN [18] and policy gradient [23] to
learn a deterministic policy. However, DDPG inherits over-
estimation bias from Q-learning and brittle convergence from
policy gradient. Fujimoto et al. [13] proposed an improved ver-
sion named TD3, which designed a clipped double Q-learning
variant to address the overestimation of Q value and intro-
duced delayed policy updates to address the coupling of value
and policy. Besides, TD3 proposed a novel regularization for
target policy smoothing to alleviate overfitting.

Recently, deep reinforcement learning has drawn much
attention in networking. Many recent DRL-based techniques
are now among the state of the arts for a variety of networking
and systems adaptation problems, including congestion con-
trol [28], adaptive bitrate streaming [11], computation offload-
ing [29], wireless resource scheduling [30], and cloud schedul-
ing [31]. This paper aims to leverage the emerging DRL
techniques to optimize resource allocation for network slic-
ing. Besides, we further improve the scalability and efficiency
of our HDRL framework by analyzing the training details
and designing a novel four-stage training process including
knowledge transfer and collaborative training.

III. SYSTEM MODEL

We focus on the dynamic resource allocation problem for
5G RAN with a base station and multiple network slices.
The users physically associate with the physical network,
while logically connect to virtual slices. The problem can be
described as network utility maximization (NUM) while ensur-
ing the minimum QoS requirements. Utility is a quantitative
description of network utilization and user satisfaction, whose
different definitions would lead to different resource allocation
strategies. We use α-fairness [32], a widely adopted scheme,
to quantitatively represent the utility. Let I and Ei be the set
of network slices and the user equipments (UEs) of the ith
network slice, respectively. Denote y

(t)
i ,k as the wireless data

rate of the kth user served by the ith network slice at the tth
time slot, then the network slice utility can be defined as a non-
decreasing function of data rate according to the α-fairness
scheme as follow:

U
(t)
i =

∑

k∈Ei
wi ,kUi ,k

(
y
(t)
i ,k

)
=

∑

k∈Ei

wi ,k

[
y
(t)
i ,k

]1−α

1− α
, (1)

where U (t)
i and Ui ,k (y

(t)
i ,k) denote the utility of the ith network

slice at the tth time slot and the utility of the kth equipment
served by the ith network slice, and wi ,k denotes the prior-
ity weight of the kth equipment served by the ith network
slice. When α → 0, α-fairness maximizes network throughput.
When α → 1, α-fairness approximates proportional fairness
which tends to configure the data rate of each equipment to
be the best. When α = 2, α-fairness is equivalent to potential
delay minimization and optimizes the network latency. When
α → ∞, α-fairness is equivalent to max-min fairness which
tends to optimize the lowest data rate of the network [33]. In
our system model, different network slices use different α to
achieve diversified QoS requirements.

In network slicing, there is a complex relationship between
data rate and network status including network configuration,
topology, traffic and resource allocation, etc. Network traf-
fic would flow through predefined ordered VNFs deployed on
various equipment, then the network queuing delay, process-
ing delay, packet loss rate and other network key performance
indicators (KPIs) would be greatly influenced especially in
network congestion, and the performance degradation of any
VNF can affect the network slicing performance. Network
resources including computation, communication and cache

2156 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 7, NO. 4, DECEMBER 2023

resources can also influence multiple network KPIs. For sim-
plification, we mainly consider the impact of network traffic
and resource allocation on network data rate, since the impacts
of other factors can be regarded as constant in our network
system. Denote the network resource allocated to the kth
equipment served by the ith slice at time slot t as x

(t)
i ,k and

the network traffic at time slot t as θ(t), data rate can be
modeled as:

y
(t)
i ,k = gi ,k

(
x
(t)
i ,k ; θ

(t)
)
. (2)

Actually, wireless data rate has no closed-form expression
but it can be measured in real time. Denote R and Umin

i ,k as the
network resource capacity of the whole system and the mini-
mum QoS requirement of the kth UE served by the ith slice.
The optimization objective is to maximize the weighted sum
of network utility of slices in a long period T with limited
resources while fulfilling personalized minimum QoS require-
ments of various users. Therefore, we formulate the dynamic
resource allocation problem for multiple network slices as:

P1 : max
{x (t)

i,k }

∑

t∈T

∑

i∈I
U

(t)
i (x ; θ,w , α)

s.t .

⎧
⎪⎪⎨

⎪⎪⎩

C1 : U
(t)
i ,k ≥ Umin

i ,k , ∀t ∈ T , i ∈ I, k ∈ Ei
C2 : 0 ≤ x

(t)
i ,k ≤ R, ∀t ∈ T , i ∈ I, k ∈ Ei

C3 : 0 ≤
∑

i∈I
∑

k∈Ei x
(t)
i ,k ≤ R, ∀t ∈ T

(3)

In the formulation above, constraints C1 ensure that the
resource allocation can meet the personalized QoS require-
ments, constraints C2 and C3 restrict the resource allocated to
all equipment should not surplus the total amount of resources.

IV. DESIGN

In this section, we propose an HDRL-based dynamic
resource allocation algorithm to maximize the weighted sum
of the network utility of multiple slices while satisfying the
personalized QoS requirements. However, the optimization
problem P1 corresponds to high-dimensional state space
and action space, due to network complexity and resource
diversity, respectively. Hence it is difficult for single-agent
deep reinforcement learning to explore the environment suf-
ficiently and converge to a well-trained policy stably. To
deal with insufficient exploration in a complicated environ-
ment [34], we propose to use hierarchical deep reinforcement
learning, which divides the task into several sub-problems
(Section IV-A). Each sub-problem is modeled as a Markov
decision process (Section IV-B) and conquered by TD3 algo-
rithm (Section IV-C). A series of hierarchically distributed
agents of HDRL can learn atomic policies towards easier
goals by sufficiently exploring the lower-dimensional action
spaces and state spaces corresponding to the sub-problems
(Section IV-D). The intrinsic behavior patterns of hierarchi-
cally distributed agents eventually make up an effective policy
to tackle the original complicated task.

A. Problem Decomposition

As for resource allocation to multiple network slices, P1

can be naturally divided into a slice-level problem and several

Fig. 1. The 5G radio access network slicing orchestration system empow-
ered by hierarchical deep reinforcement learning, consisting of three layers:
physical network layer, digital twin layer and network application layer, and
three domains in digital twin layer: data repository, service mapping mod-
els and twin management center. The data repository collects and stores data
from the substrate network, while the service mapping models establish phys-
ical entity representations and performance models. Motivated by the network
application layer, the twin management center optimizes policies for physi-
cal network management with experience dataset and performance prediction
models, satisfying customized QoS requirements of heterogeneous industrial
applications and devices.

user-level problems. The slice-level problem is to dynamically
allocate virtual resources to network slices by SDN controller.
The user-level problems are handled by each slice controller,
allocating network resources to user equipment served by each
slice. Each sub-problem can be solved with a deep reinforce-
ment learning agent individually, while knowledge transfer
and collaborative training can further improve training effi-
ciency and refine the policy, respectively. The system model
and HDRL framework are shown in Fig. 1.

Denote the amount of resources allocated to the ith slice as
zi , then zi =

∑
k∈Ei xi ,k , hence the slice-level problem can

be written as:

P2 : max
{z (τ)i }

∑

τ⊂T

∑

i∈I
U

(τ)
πi (zi ; θi ,wi , αi)

s.t .

{
C4 : 0 ≤ z

(τ)
i ≤ R, ∀τ ⊂ T , i ∈ I

C5 : 0 ≤
∑

i∈I z
(τ)
i ≤ R, ∀τ ⊂ T

(4)

where πi is the resource allocation policy of the ith slice and
U

(τ)
πi is the accumulated network utility with penalty of the ith

slice in a time period τ . Based on P1 and P2, the user-level
problem to be solved by the ith slice can be formulated as:

P3 : max
{x (t)

i,k }

∑

t∈τ

∑

k∈Ei
wi ,kU

(t)
i ,k

(
xi ,k ; θi , αi

)

s.t .

⎧
⎪⎪⎨

⎪⎪⎩

C6 : U
(t)
i ,k ≥ Umin

i ,k , ∀t ∈ τ, k ∈ Ei
C7 : 0 ≤ x

(t)
i ,k ≤ R, ∀t ∈ τ, k ∈ Ei

C8 :
∑

k∈Ei x
(t)
i ,k = z

(τ)
i , ∀t ∈ τ

(5)

Actually, it is challenging for deep reinforcement learning
to solve this constrained optimization problem directly. As for
P3, we can rewrite constraints C6 and C8 as penalty terms

HUANG et al.: TOWARD SCALABLE AND EFFICIENT HIERARCHICAL DEEP REINFORCEMENT LEARNING 2157

added to the objective function, then the optimization problem
can be rewritten as:

P4: max
{x (t)

i,k }

∑

t∈τ
U

(t)
πi

(
x
(t)
i ,k ; z

(τ)
i , θi ,wi , αi

)

U
(t)
πi =

∑

k∈Ei

(
wi ,kU

(t)
i ,k − H

(
Umin
i ,k − U

(t)
i ,k

))

− β

∥∥∥∥
∑
k∈Ei

x
(t)
i ,k − z

(τ)
i

∥∥∥∥
2

2

s.t . C7 : 0 ≤ x
(t)
i ,k ≤ R, ∀t ∈ τ, k ∈ Ei (6)

where H (·) for QoS penalty is a leaky rectified linear unit
(ReLU). Practically, we set the QoS penalty as H (1.1Umin

i ,k −
U

(t)
i ,k) rather than H (Umin

i ,k −U
(t)
i ,k) to reserve a performance

margin so that agents can satisfy minimum QoS requirements.
Since constraints C8 have been changed into a penalty item,

the sum of resources allocated to UEs by a network slice
would be not equal to the resources allocated by the slice-level
resource coordinator strictly. Therefore, the resource allocation
may violate constraints C5 of P2. We define a proportional
reallocation strategy as Eq. (7) to handle this violation so that
constraints C5 of P2 can be always satisfied.

x ′i ,k =

⎧
⎨

⎩
xi ,k ,

∑
i∈I

∑
k∈Ei x

(t)
i ,k ≤ R

xi ,k · R∑
i∈I

∑
k∈Ei xi,k

, else
(7)

B. Markov Decision Process Modeling

As the complicated constraints of the optimization problems
have been tackled by surrogate penalized objectives and the
reallocation strategy, we can easily apply DRL to solve these
problems. Each sub-problem can be considered as a Markov
decision process (MDP): at a given state st ∈ S , the agent
chooses an action at ∈ A to perform according to its pol-
icy π : S → A, then the environment would transfer to a
new state st+1 and the agent would gain an immediate reward
rt = Rat (st , st+1). As for a user-level problem P4, the states
correspond to the present network traffic and utility of all user
equipment served by the corresponding slice as well as the
total available amount of network resources. The actions are
the assignments of resources to user equipment. The reward
is the slice utility with the penalty, i.e., U (t)

πi . As for the slice-
level problem P2, the states correspond to the average network
traffic and utility of all network slices in a short period τ . The
actions are the assignments of resources to network slices.
The reward is the sum of accumulated slice rewards in τ with
a penalty of re-allocation. DRL can train a multi-step deci-
sion policy to maximize the γ-discounted long-term reward of
MDP, given by Rt =

∑∞
k=0 γ

k rk+t , where γ is a discount
factor determining the priority of short-term rewards.

C. Twin Delayed Deep Deterministic Policy Gradient

Considering the action space is continuous, we employ TD3
algorithm [13] to train a deterministic policy, which consid-
ers the interplay between function approximation error in both
policy and value updates. TD3 consists of two critic networks
Qθ1 ,Qθ2 with weights θ1, θ2, and an actor network πφ with

Fig. 2. The four-stage training pipeline of hierarchical TD3 framework.

weights φ, as well as their target networks Qθ′1 ,Qθ′2 , and πφ′

with weights θ′1, θ′2 and φ′. The critic network is an esti-
mation of Q value while the actor network would choose
actions to maximize Q value. As an off-policy algorithm,
TD3 stores transitions (st , at , rt , st+1) in the replay buffer B
while exploring the environment. According to Bellman equa-
tion, the loss function of the critic network Qθi is defined as
the mean squared temporal difference error:

Li =

(
Rat (st , st+1) + γ min

i=1,2
Qθ′i

(st+1, ãt+1)−Qθi (st , at)

)2

,

(8)

where ã is an action chosen by the target actor network, added
with clipped noise as regularization:

ãt+1 = πφ′(st+1) + ε, ε ∼ clip(N (0, σ),−c, c). (9)

The actor network is updated at a lower frequency than the
critic networks according to the following deterministic policy
gradient:

∇φJ (φ) = ∇aQθ1(s , a)|a=πφ(s)∇φπφ(s). (10)

Meanwhile, the target networks update their weights at a lower
frequency than the evaluation network:

φ′ = τφ+ (1− τ)φ′, θ′i = τθi + (1− τ)θ′i , i = 1, 2, (11)

where τ should be a very small positive value. The twin
delayed updates of the actor network and target networks
according to Eq. (10) and Eq. (11) can improve training
stability, overcoming brittle convergence property of DDPG.

D. Hierarchical Reinforcement Learning

We can adopt TD3 algorithm to solve the slice-level
problem and user-level problems independently, thus realizing
sufficient exploration and scalable management. To improve
efficiency and enhance stability, knowledge transfer, and pro-
gressive learning are employed for user-level agents and the
slice-level agent, respectively. To eliminate distribution mis-
matching caused by different training settings of hierarchical
agents, a collaborative training stage is added to refine value
approximation and policy. Hence, we propose a four-stage
training pipeline as is presented in Fig. 2.

Stage I (TD3 Pretraining): In the first stage, we train a
user-level agent with TD3 algorithm via interaction with the

2158 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 7, NO. 4, DECEMBER 2023

network slicing environment. Different from common prob-
lems solved by DRL, resource allocation problems P2 and P3

are nonlinear optimization problems with sophisticated con-
straints. Hence, the action space A is restricted and changeable
with states. The original exploration method of TD3 is to select
an action by the actor network with Gaussian noise at each
step:

at = πφ(st) + ε, ε ∼ N (0, σ). (12)

As for P3, constraints C8 would be hardly satisfied with this
exploration method, so the immediate reward is always nega-
tive and instructive actions from feasible regions are hardly
sampled, leading to a bad policy. To handle this problem,
we propose a novel hybrid exploration method integrating ε-
greedy exploration and Gaussian noise exploration: sample an
action according to Eq. (12) with probability 1−ε, otherwise,
select a random action at satisfying constraints C7 and C8 of
P3. This hybrid exploration method is used for P2 as well.

Stage II (Knowledge Transfer): In this stage, the other
untrained user-level agents are pretrained with prior knowl-
edge transferred from the user-level TD3 agent pretrained in
Stage I. Since single slice resource allocation tasks have high
similarity, knowledge transfer among user-level TD3 agents
can benefit training efficiency and convergence. Knowledge
transfer among different user-level neural networks can be
implemented via parameter transfer and fine-tuning. Since
multi-layer perceptron (MLP) networks are leveraged as critic
networks and actor networks, different numbers of users
served by different slices correspond to different input and
output dimensions, i.e., heterogeneous neural network archi-
tectures. Therefore, only partial parameters can be directly
copied among user-level agents of different network slices.
Considering the task similarity, the weights of connections
between neurons with identical semantics (e.g., traffic and
identical performance indicator) and other layers are likely to
follow similar probability distributions, so pretrained weights
can provide a probability distribution prior for untrained
weights initialization via semantic-variant weight sampling.

Stage III (Progressive Learning): In this stage, the slice-
level TD3 agent would be pretrained through hybrid explo-
ration with the parameters of the pretrained user-level agents
fixed. However, the system model is more complicated than a
single network slice model, so it is difficult to stably converge
to a well-trained policy. We propose a progressive training
approach to handle these problems and enhance the training
stationarity. We first train the slice-level agent with a sim-
plified reward function and simulation environment, i.e., the
heavier penalty for re-allocation and no re-allocation strategy,
thus the slice-level agent can learn a vanilla resource alloca-
tion policy and adapt to the resource capability. Afterward,
the agent will adapt to the realistic reward mechanism and
reallocation strategy stably via step-by-step transfer learning.

Stage IV (Collaborative Training): In this stage, collab-
orative training would eliminate the distribution mismatch
between user-level agents and the slice-level agent [20] caused
by different pretraining settings and refine their value approx-
imation and policy. At the first two training stages, we
randomize the slice resource amount zi in a much wider range

than realistic allocation by the slice-level agent so that pre-
trained user-level agents can adapt to arbitrary zi . However,
the sampling is sparse in such a large state space, leading
to insufficient exploration of user-level agents. This unrealis-
tic hypothesis of the slice-level action’s marginal probability
distribution leads to distribution mismatch of user-level state
space between exploration and exploitation, indirectly result-
ing in distribution mismatch of slice-level state space between
exploration and exploitation (see Fig. 2). A main solution is
to replace the slice-level action distribution hypothesis with
realistic sampling by slice-level policy, so we propose col-
laborative training to train the hierarchical distributed agents
alternately: the slice-level and user-level agents are trained
alternately through TD3 algorithm while other agents fix
their network parameters and select greedy actions via actor
networks, while user-level agents can be trained in parallel
to improve efficiency. Since the realistic standard deviation of
slice-level action distribution is smaller, user-level agents can
explore the realistic state space more sufficiently and converge
to better policies.

V. EVALUATION

This section provides detailed simulation results of the
proposed hierarchical deep reinforcement learning based
dynamic resource allocation framework for 5G RAN slic-
ing orchestration system. The goals of our experiments are
three-fold: 1) to validate the effectiveness of deep reinforce-
ment learning in solving non-convex optimization problems
for network slicing, 2) to verify the effectiveness and effi-
ciency of the four-stage training pipeline for the proposed
HDRL framework, and 3) to demonstrate that our frame-
work is capable of optimizing network utility and fulfilling
various personalized QoS requirements via dynamic resource
allocation. The rest of this section is organized as follows. In
Section V-A, we describe the simulation experiment setup and
neural network designation. Finally, the training convergence
and performance are validated in Section V-B.

A. Environment Setting

In the simulation environment, we create three network
slices and each slice serves five users. To simulate various
personalized QoS requirements, we randomize service prior-
ity weights wi ,k , fairness parameters αi ,k and minimum QoS
requirements Umin

i ,k for each UE, as is defined in α-fairness
utility optimization model (see Section III). The network traf-
fic and network performance can be measured in real-time in
our simulation environment. According to the problem formu-
lation, the reward function is defined as the sum of network
utility, QoS penalty and resource limitation penalty. Hence,
we can use episode accumulative reward, episode accumula-
tive utility and QoS penalty as evaluation metrics to evaluate
both user-level and slice-level resource allocation strategies.

DNNs and DRL are implemented by Pytorch. Each critic
network or actor network is an MLP of 4 fully connected
layers, with 256 neurons and 128 neurons in two hidden layers.
ReLU is used as an activation function for the hidden layers of
all DNNs, while tanh is used to activate the output layers of

HUANG et al.: TOWARD SCALABLE AND EFFICIENT HIERARCHICAL DEEP REINFORCEMENT LEARNING 2159

TABLE I
THE AVERAGE PERFORMANCE ON A SINGLE SLICE

actor networks. We set the discounted factor γ for cumulative
reward to be 0.99, so as to optimize the dynamic resource
allocation over a long period.

We use an NVIDIA GeForce RTX 3090 GPU to train and
test our algorithms. We train all of our TD3 networks by Adam
optimizer, using the learning rates of 6e-4 and 3e-4 for critic
networks and actor networks, respectively, batch size of 256,
target network soft update rate of 0.002, and policy update
delay of 5 steps. As for our hybrid exploration method, when
training the user-level TD3 agents for slice management, the
standard deviation σ of Gaussian noise is 0.02 and the prob-
ability ε to sample a non-greedy action is 0.3; when training
the slice-level TD3 agent, σ is 0.05 and ε is 0.4.

B. Performance Evaluation

1) Performance Evaluation of Single Slice Management:
The hierarchical TD3 framework for dynamic resource allo-
cation is trained through the four-stage pipeline as proposed
in Section IV-D. User-level agents for single slice manage-
ment are pretrained in the first two stages. At TD3 pretraining
stage, user-level agents are trained through TD3 algorithm
and hybrid exploration strategy individually, given a random-
ized amount of resources in a single slice. In comparison, We
trained a DDPG version without hybrid exploration (with only
Gaussian noise) and a DDPG version with hybrid exploration
on the same network slice, while the random feasible solution
samples actions satisfying constraints C7 and C8 of P3.

The average long-term rewards versus training episodes
are shown in Fig. 3. The comparison between the DDPG
versions with and without hybrid exploration indicates that
hybrid exploration can improve performance at a faster pace
and achieve higher training efficiency since the constraints of
action selection can be quickly explored with the guidance
of random feasible solutions. Compared with DDPG versions,
TD3 algorithm further improves training efficiency. The aver-
age performance of different pretraining algorithms for single
slice management is evaluated in Table I, indicating that deep
reinforcement learning is effective in optimizing resource allo-
cation for network slicing, and our training approach leads to
better performance.

At the knowledge transfer stage, we directly utilize
semantic-variant weight sampling and partial parameter trans-
fer to initialize the untrained user-level agents with the
pretrained ones. The untrained user-level agents are fine-
tuned with TD3 algorithms and hybrid exploration afterward.
The average long-term rewards versus training episodes are
recorded in Fig. 3, indicating the stability and efficiency of
transfer learning. The performance evaluated by episode cumu-
lative reward is shown in Table II. After parameter transfer,

Fig. 3. The pretraining and knowledge transfer process of the user-level
agents. The pre-training process of user-level TD3 agents is compared with
a DDPG version without hybrid exploration and a DDPG version with
hybrid exploration. The transfer learning process of user-level TD3 agents
is compared with direct training.

TABLE II
LONG-TERM REWARDS OF KNOWLEDGE TRANSFER AMONG SLICES

an untrained agent can achieve much better performance than
a random strategy, indicating the effectiveness of semantic-
variant weight sampling and partial parameter transfer. Fine-
tuning achieves good performance similar to direct training
but at a faster pace.

2) Overall Performance of the Network Slicing System:
Given all of the pretrained user-level agents responsible for
resource allocation on a single network slice, we can train a
slice-level agent for hierarchical resource allocation. In this
part, we will evaluate the overall performance of the HDRL
framework for resource allocation in RAN slicing.

The slice-level agent can be trained via either direct train-
ing or progressive training with the parameters of user-level
agents fixed. The average long-term rewards versus episodes
of direct training and progressive training are shown in Fig. 4,
which indicate that it is not stable to train the slice-level agent
directly in a sophisticated simulation environment. Instead,
we can stably pretrain the slice-level agent with a simplified
reward mechanism, then we adapt the slice-level policy to the
realistic reward mechanism through fine-tuning.

2160 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 7, NO. 4, DECEMBER 2023

Fig. 4. The progressive learning process of the slice-level agent, compared
with direct training.

Given the slice-level agent pretrained in stage III and the
user-level agents pretrained in stage I and II, we further
train these hierarchically distributed agents collaboratively to
eliminate the distribution mismatch. The performance of this
HDRL-based network slicing orchestration system is evaluated
by episode accumulative reward, episode accumulative utility
and QoS penalty, as is shown in Table III. In this table, H-TD3
and H-DDPG refer to hierarchical TD3 framework and hierar-
chical DDPG framework where the slice-level agent is directly
trained without the progressive scheme, respectively, while
(III) and (IV) refer to training through the first three stages and
training through the four-stage pipeline, respectively. In com-
parison to the proposed H-TD3 framework, random allocation
strategy, ADMM algorithm [14], and H-DDPG are evaluated
in the simulation environment as baseline algorithms, with
our pretrained user-level agents settling the user-level resource
allocation problems.

The performance evaluation indicates that the proposed
H-TD3 framework with a four-stage training pipeline outper-
forms all the baseline algorithms in network utility and QoS
assurance, which has significant improvements of 25% and 8%
relative to random strategy and ADMM strategy in network
utility, respectively. Additionally, we observe that the proposed
HDRL framework and four-stage training pipeline are suit-
able for different state-of-the-art DRL algorithms (TD3 and
DDPG). In our network slicing orchestration system, H-TD3
can achieve better performance than H-DDPG. By compar-
ing the performance among direct training (H-DDPG and
H-TD3), progressive training (H-DDPG (III) and H-TD3 (III)),

TABLE III
PERFORMANCE EVALUATION ON THE WHOLE NETWORK

SLICING SYSTEM

Fig. 5. Performance of network slicing system in two network traffic cases.
In the congestion case, the network traffic increases rapidly from time step
9 (the red line in (b)), resulting in performance degradation. The proposed
HDRL strategy outperforms other baseline strategies while it also suffers less
performance degradation in network congestion.

and collaborative training (H-DDPG (IV) and H-TD3 (IV)),
we conclude that progressive training is more effective than
direct training, and the collaborative training can significantly
improve the overall performance of HDRL-based network slic-
ing system. The QoS penalty is still negative because we
reserve a performance margin when training user-level agents,
actually the proposed hierarchical TD3 framework can com-
pletely fulfill personalized QoS requirements under arbitrary
network traffic circumstances.

3) Adaptability to Various Network Traffic Scenarios: We
monitor the performance of network slicing system in two
classic network traffic cases: ordinary case and congestion
case, as is shown in Fig. 5. Under ordinary network traffic
circumstances, our hierarchical TD3 framework can maximize
network utility and satisfy minimum QoS requirements in
dynamic resource allocation tasks, outperforming ADMM
framework and random strategy. Furthermore, our framework
can still satisfy the minimum QoS requirements and suffer

HUANG et al.: TOWARD SCALABLE AND EFFICIENT HIERARCHICAL DEEP REINFORCEMENT LEARNING 2161

less performance degradation than ADMM framework under
network congestion as the network traffic increases rapidly
(after step 9 in the congestion case). Compared with the
random strategy and ADMM strategy, our framework can
better guarantee minimum QoS requirements and network
performance in network congestion.

VI. CONCLUSION

In this work, we study the task of dynamic resource
allocation for 5G radio access network slicing to maximize the
network utility while ensuring the customized QoS, which is
formulated as a hierarchical constrained optimization problem.
We propose a novel hierarchical deep reinforcement learning
framework to solve the slice-level and user-level allocation
problems efficiently with hierarchical distributed TD3 agents.
The framework is trained with hybrid exploration through four
stages. Simulation experiments demonstrate that our training
approach can enhance convergence and improve efficiency, and
the policy is further improved with the distribution mismatch
eliminated via collaborative training, enabling scalable man-
agement and rapid deployment. Extensive experiments show
that the proposed framework outperforms existing methods
in network utility maximization and QoS assurance, which
improves the network utility by 25% and 8% compared
with the random strategy and the ADMM strategy, respec-
tively. Compared with baseline algorithms, our framework
achieves better performance in network slicing while fulfilling
personalized QoS requirements in diversified network traffic
cases.

REFERENCES

[1] L. Ji, S. He, W. Wu, C. Gu, J. Bi, and Z. Shi, “Dynamic network slicing
orchestration for remote adaptation and configuration in Industrial IoT,”
IEEE Trans. Ind. Informat., vol. 18, no. 6, pp. 4297–4307, Jun. 2022.

[2] Z. Xia, S. Xue, J. Wu, Y. Chen, J. Chen, and L. Wu, “Deep reinforce-
ment learning for smart city communication networks,” IEEE Trans. Ind.
Informat., vol. 17, no. 6, pp. 4188–4196, Jun. 2021.

[3] K. Zhang, J. Cao, and Y. Zhang, “Adaptive digital twin and
multiagent deep reinforcement learning for vehicular edge comput-
ing and networks,” IEEE Trans. Ind. Informat., vol. 18, no. 2,
pp. 1405–1413, Feb. 2022.

[4] S. He, K. Shi, C. Liu, B. Guo, J. Chen, and Z. Shi, “Collaborative sensing
in Internet of Things: A comprehensive survey,” IEEE Commun. Surveys
Tuts., vol. 24, no. 3, pp. 1435–1474, 3rd Quart., 2022.

[5] A. A. Barakabitze, A. Ahmad, R. Mijumbi, and A. Hines, “5G network
slicing using SDN and NFV: A survey of taxonomy, architectures and
future challenges,” Comput. Netw., vol. 167, Feb. 2020, Art. no. 106984.

[6] Z. Wang, Y. Wei, F. R. Yu, and Z. Han, “Utility optimization for resource
allocation in multi-access edge network slicing: A twin-actor deep deter-
ministic policy gradient approach,” IEEE Trans. Wireless Commun.,
vol. 21, no. 8, pp. 5842–5856, Aug. 2022.

[7] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
“On multi-access edge computing: A survey of the emerging 5G network
edge cloud architecture and orchestration,” IEEE Commun. Surveys
Tuts., vol. 19, no. 3, pp. 1657–1681, 3rd Quart., 2017.

[8] F. Naeem, G. Srivastava, and M. Tariq, “A software defined network
based fuzzy normalized neural adaptive multipath congestion control
for the Internet of Things,” IEEE Trans. Netw. Sci. Eng., vol. 7, no. 4,
pp. 2155–2164, Oct.–Dec. 2020.

[9] H. Wang, Y. Wu, G. Min, and W. Miao, “A graph neural network-
based digital twin for network slicing management,” IEEE Trans. Ind.
Informat., vol. 18, no. 2, pp. 1367–1376, Feb. 2022.

[10] Y. Shi, Y. E. Sagduyu, and T. Erpek, “Reinforcement learning for
dynamic resource optimization in 5G radio access network slicing,” in
Proc. IEEE 25th Int. Workshop Comput.-Aided Model. Design Commun.
Links Netw. (CAMAD), 2020, pp. 1–6.

[11] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video stream-
ing with pensieve,” in Proc. Conf. ACM Special Interest Group Data
Commun., 2017, pp. 197–210.

[12] F. Naeem, G. Kaddoum, and M. Tariq, “Digital twin-empowered network
slicing in B5G networks: Experience-driven approach,” in Proc. IEEE
Globecom Workshops (GC Wkshps), 2021, pp. 1–5.

[13] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approxima-
tion error in actor–critic methods,” in Proc. Int. Conf. Mach. Learn.,
2018, pp. 1587–1596.

[14] Q. Liu, T. Han, N. Zhang, and Y. Wang, “DeepSlicing: Deep reinforce-
ment learning assisted resource allocation for network slicing,” in Proc.
IEEE Global Commun. Conf. (GLOBECOM), 2020, pp. 1–6.

[15] Y. Hua, R. Li, Z. Zhao, X. Chen, and H. Zhang, “GAN-powered
deep distributional reinforcement learning for resource management
in network slicing,” IEEE J. Sel. Areas Commun., vol. 38, no. 2,
pp. 334–349, Feb. 2020.

[16] T. Dong et al., “Intelligent joint network slicing and routing via GCN-
powered multi-task deep reinforcement learning,” IEEE Trans. Cogn.
Commun. Netw., vol. 8, no. 2, pp. 1269–1286, Jun. 2022.

[17] W. Wu et al., “Dynamic RAN slicing for service-oriented vehicular
networks via constrained learning,” IEEE J. Sel. Areas Commun., vol. 39,
no. 7, pp. 2076–2089, Jul. 2020.

[18] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[19] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proc. AAAI Conf. Artif. Intell., vol. 30, 2016,
pp. 2094–2100.

[20] K. Xu, H. Yu, Q. Lai, Y. Wang, and R. Xiong, “Efficient learning of goal-
oriented push-grasping synergy in clutter,” IEEE Robot. Autom. Lett.,
vol. 6, no. 4, pp. 6337–6344, Oct. 2021.

[21] K. Xu, H. Yu, R. Huang, D. Guo, Y. Wang, and R. Xiong, “Efficient
object manipulation to an arbitrary goal pose: Learning-based anytime
prioritized planning,” 2021, arXiv:2109.10583.

[22] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in
Proc. Int. Conf. Mach. Learn., 2016, pp. 1995–2003.

[23] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gra-
dient methods for reinforcement learning with function approximation,”
in Proc. Adv. Neural Inf. Process. Syst., 2000, pp. 1057–1063.

[24] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,”
in Proc. Int. Conf. Mach. Learn., 2016, pp. 1928–1937.

[25] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in Proc. Int. Conf. Mach. Learn., 2015,
pp. 1889–1897.

[26] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017, arXiv:1707.06347.

[27] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” 2015, arXiv:1509.02971.

[28] N. Jay, N. Rotman, B. Godfrey, M. Schapira, and A. Tamar, “A deep
reinforcement learning perspective on Internet congestion control,” in
Proc. Int. Conf. Mach. Learn., 2019, pp. 3050–3059.

[29] Y. Dai, K. Zhang, S. Maharjan, and Y. Zhang, “Deep reinforcement
learning for stochastic computation offloading in digital twin networks,”
IEEE Trans. Ind. Informat., vol. 17, no. 7, pp. 4968–4977, Jul. 2021.

[30] S. Chinchali et al., “Cellular network traffic scheduling with deep rein-
forcement learning,” in Proc. AAAI Conf. Artif. Intell., vol. 32, 2018,
pp. 766–774.

[31] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and
M. Alizadeh, “Learning scheduling algorithms for data processing clus-
ters,” in Proc. ACM Special Interest Group Data Commun., 2019,
pp. 270–288.

[32] J. Mo and J. Walrand, “Fair end-to-end window-based congestion
control,” IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 556–567, Oct. 2000.

[33] M. Uchida and J. Kurose, “An information-theoretic characterization of
weighted alpha-proportional fairness,” in Proc. IEEE INFOCOM, 2009,
pp. 1053–1061.

[34] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum,
“Hierarchical deep reinforcement learning: Integrating temporal abstrac-
tion and intrinsic motivation,” in Proc. Adv. Neural Inf. Process. Syst.,
vol. 29, 2016, pp. 3675–3683.

2162 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 7, NO. 4, DECEMBER 2023

Renlang Huang (Student Member, IEEE) received
the B.Eng. degree from Zhejiang University,
Hangzhou, China, in 2022, where he is currently
pursuing the Ph.D. degree with the College of
Control Science and Engineering. His research
interests include visual and multi-modal perception,
deep learning, and localization and mapping for
autonomous mobile robots.

Miao Guo (Student Member, IEEE) received the
B.Eng. degree from Zhejiang University, Hangzhou,
China, in 2020, where she is currently pursu-
ing the Ph.D. degree with the College of Control
Science and Engineering. Her research interests
include industrial IoT, deterministic network, and
time-sensitive networking.

Chaojie Gu (Member, IEEE) received the B.Eng.
degree from the Harbin Institute of Technology,
Weihai, China, in 2016, and the Ph.D. degree in
computer science and engineering from Nanyang
Technological University, Singapore, in 2020. He
was a Research Fellow with Singtel Cognitive and
Artificial Intelligence Lab for Enterprise in 2021.
He is an Assistant Professor with the College
of Control Science and Engineering, Zhejiang
University, Hangzhou, China. His research interests
include IoT, industrial IoT, edge computing, and low
power wide area network.

Shibo He (Senior Member, IEEE) received the
Ph.D. degree in control science and engineering
from Zhejiang University, Hangzhou, China, in
2012, where he is currently a Professor. He was
an Associate Research Scientist from March 2014
to May 2014 and a Postdoctoral Scholar from
May 2012 to February 2014 with Arizona State
University, Tempe, AZ, USA. From November 2010
to November 2011, he was a Visiting Scholar with
the University of Waterloo, Waterloo, ON, Canada.
His research interests include Internet of Things,
crowdsensing, and big data analysis.

Jiming Chen (Fellow, IEEE) received the B.Sc.
and Ph.D. degrees in control science and engineer-
ing from Zhejiang University, Hangzhou, China, in
2000 and 2005, respectively, where he is currently
a Professor with the College of Control Science and
Engineering and the Deputy Director of the State
Key Laboratory of Industrial Control Technology.
His research interests include the Internet of Things,
sensor networks, networked control, and control
system security.

Mingyang Sun (Senior Member, IEEE) received the
Ph.D. degree from the Department of Electrical and
Electronic Engineering, Imperial College London,
London, U.K., in 2017. From 2017 to 2019, he was a
Research Associate and a DSI Affiliate Fellow with
Imperial College London. He is currently a Professor
of Control Science and Engineering under the
Hundred Talents Program with Zhejiang University,
Hangzhou, China. Also, he is an Honorary Lecturer
with Imperial College London. His research interests
include AI in energy systems and cyber-physical
energy system security and control.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

