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ABSTRACT
The mmWave radar has been exploited for gesture recognition.
However, existing mmWave-based gesture recognition methods
cannot identify different users, which is important for ubiquitous
gesture interaction in many applications. This paper proposes Ges-
turePrint, which is the first to achieve person-independent ges-
ture recognition and gesture-based user identification using a com-
modity mmWave radar sensor. GesturePrint features an effective
pipeline that enables the gesture recognition system to identify
users with a minor additional cost. By introducing an efficient sig-
nal preprocessing stage and a novel network architecture GesIDNet,
which employs an attention-based adaptive multilevel feature fu-
sion mechanism, GesturePrint extracts both unique characteristics
of predefined gestures and effective features of personalized mo-
tion patterns. Experiments on our self-collected dataset and three
public datasets demonstrate GesturePrint’s superior performance
in enabling user identification for gesture recognition systems.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; • Computing methodologies →
Machine learning.
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1 INTRODUCTION
Nowadays, the mmWave radar has received increasing attention
from industry and academia because of its low power, high spatial
resolution, and robustness to temperature and lighting conditions.
The mmWave radar has empowered plenty of applications in au-
tonomous driving, human localization and tracking, and healthcare.
In recent years, there is a trend of utilizing mmWave radar to im-
plement gesture recognition systems, enabling ubiquitous gesture
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Figure 1: The visualization of gesture point clouds.

interaction in a broad spectrum of applications, including gaming
control, Internet of Things (IoT), and virtual reality (VR). In the last
several years, several mmWave-based gesture recognition solutions
have been proposed. Although existing solutions can accurately
recognize predefined gestures performed by different users, none of
them can identify the user who performs the gestures. In practice,
the capability of user identification can significantly improve the
user experience in interacting with smart devices. For example,
users can personalize the meaning of gestures according to their
habits when operating smart devices.

To unleash the potential of the mmWave-based gesture recog-
nition system, in this work, we propose GesturePrint, a reliable
one-stop solution to enable the gesture recognition system to iden-
tify users with minimal extra cost. GesturePrint first obtains point
clouds related to objects in the environment by the radar device. It
then segments the gesture motions utilizing a parameter-adaptive
sliding window method, subsequently removing the outlier points
that are distinguished from points reflected from people. With the
preprocessed data,GesturePrint can accurately recognize predefined
gestures and identify the user who performs the gestures based on
our specially designed network architecture GesIDNet.

2 PRELIMINARIES AND DESIGN OVERVIEW
2.1 Preliminaries
The mmWave radar captures signals reflective of gesture motions
as users perform gestures. As personal behavioral traits can serve
as biometrics, we utilize mmWave radar to capture personal charac-
teristics, including behavior manners and personalized unconscious
motion styles, from gesture motions for identification.

Figure 1 shows the visualization of gesture point clouds captured
from User A and User B when they performed American Sign Lan-
guage (ASL) signs ‘push’ and ‘front’. These two users have similar
body shapes, with a height of around 160 cm and a weight of around
48 kg. The gesture point clouds exhibit distinct characteristics that
can be utilized for gesture recognition and user identification. On
the one hand, gesture point clouds demonstrate different shapes
and movements of different ASL gestures. On the other hand, ges-
ture point clouds differ in space and time between the same gesture
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Table 1: Performance comparison. SOTA denotes previous state-of-the-art results. The best results are marked in bold.

Dataset GesturePrint (ours) Pantomime mHomeGes mTransSee
Scenario Office Meeting Room Office Open Home Home
Metrics GRA GRF1 GRAUC GRA GRF1 GRAUC GRA GRF1 GRAUC GRA GRF1 GRAUC GRA GRF1 GRAUC GRA GRF1 GRAUC
SOTA / / 0.9714 - 0.9994 [5] 0.9612 - 0.9994 [3] 0.9800 [2] - - 0.9800 [1] - -

GesturePrint 0.9822 0.9821 0.9908 0.9887 0.9885 0.9942 0.9854 0.9846 0.9997 0.9662 0.9633 0.9993 0.9960 0.9957 0.9966 0.9988 0.9988 0.9992

Metrics UIA UIF1 UIAUC UIA UIF1 UIAUC UIA UIF1 UIAUC UIA UIF1 UIAUC UIA UIF1 UIAUC UIA UIF1 UIAUC
SOTA / / / / / /

GesturePrint 0.9926 0.9901 0.9947 0.9978 0.9972 0.9990 0.9985 0.9972 0.9987 0.9931 0.9902 0.9962 0.9933 0.9925 0.9969 0.9760 0.9707 0.9913
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Figure 2: The overview of GesturePrint.

performed by different users, such as point number, coverage, and
density. These differences are mainly caused by individual varia-
tions in arm length, motion speed, range of motion, and implicit
motion habits. Thus, it is desirable to design an efficient data pre-
processing method and an effective network for achieving reliable
gesture recognition and user identification with mmWave radar.

2.2 Design Overview
GesturePrint is designed to extract effective features regarding spe-
cific gestures and users from sparse point clouds captured by the
mmWave radar. Figure 2 shows the system pipeline of GesturePrint,
which has two major stages with six modules. The data preprocess-
ing stage includes point clouds capture, gesture segmentation, noise
canceling, and data augmenation. The classification stage includes
gesture recognition and user identification.

During the data preprocessing stage, GesturePrint works with a
commodity mmWave radar sensor, after obtaining the points con-
verted from signal data through the radar, it segments out gestures
from temporal point cloud frames by using an adaptive sliding
window. After gesture segmentation, GesturePrint further discards
outlier noise points that are not reflected from the human body
by utilizing DBScan. We aggregate points captured by radar in the
whole gesture process, which are then fed into GesIDNet for gesture
recognition. With the recognition result, GesIDNet further identi-
fies the user performing the gesture with the gesture-corresponding
recognition model. Finally, the gesture and the user are inferred by
GesturePrint. In particular, during training, we augment the point
cloud data by adding some random jitters to the points.

For the classification stage, we propose GesIDNet to address
recognition and identification tasks based on gesture point clouds.
PointNet++ [4] can extract details and features from data structured
in the point cloud format. However, while PointNet++ is typically
employed with large-scale dense point clouds, the gesture point
clouds captured by the mmWave radar are usually sparse. Thus,
to better extract features from the sparse gesture point clouds, we
adopt the set abstraction block of PointNet++ and further design a
multilevel feature fusion module with an attention mechanism.

On the one hand, GesIDNet uses the set abstraction block of
PointNet++ to extract local spatial features at different scales from
the aggregated gesture point clouds, and then these multiscale local
features are combined for extracting high-level features. On the

other hand, the aggregated point clouds comprise an unordered set
of points with varying numbers and strong spatio-temporal corre-
lations. To exploit the data characteristics, we introduce a novel
multilevel feature fusion module with an attention mechanism to
adaptively combine low-level features and high-level features ex-
tracted from point clouds. With the module, GesIDNet assigns large
weights to the features reflecting effective spatio-temporal patterns.
Based on the above design, GesIDNet can effectively extract unique
gesture features for gesture recognition, as well as features contain-
ing personalized motion patterns for user identification.

3 EVALUATION
We evaluate GesturePrint on four mmWave-based gesture datasets
that span diverse scenarios, user scales and predefined gestures.
These datasets include our self-collected dataset, the GesturePrint
dataset (including data from 17 participants performing 15 ASL
gestures in two scenarios), and three public datasets, i.e., the Pan-
tomime dataset [3], the mHomeGes dataset [2], and the mTransSee
dataset [1]. We use four metrics, i.e., accuracy, F1-Score, AUC, and
equal error rate (EER), to measure the performance of GesturePrint
in both gesture recognition (GR) and user identification (UI).

As shown in Table 1, GesturePrint achieves accuracy above 96%
for gesture recognition across all the datasets. Compared with the
state-of-the-art results on the three public datasets [1–3, 5], Ges-
turePrint achieves comparable recognition accuracy. Besides, the
system consistently maintains GRF1 above 0.96 and GRAUC ex-
ceeding 0.99 across all the scenarios. For user identification, the
overall accuracy of GesturePrint is over 97%, demonstrating that it
is effective with different user scales. Besides, it consistently main-
tains reliable UIF1 and UIAUC. Moreover, GesturePrint achieves
an average result of 0.75% EER across all the scenarios, with none
exceeding 1.6% EER. All the results indicate the effectiveness of
GesturePrint in gesture recognition and user identification.
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