
Towards Distributed Flow Scheduling in IEEE 802.1Qbv Time-Sensitive
Networks

MIAO GUO, Zhejiang University, China

SHIBO HE, Zhejiang University, China

CHAOJIE GU, Zhejiang University, China

XIUZHEN GUO, Zhejiang University, China

JIMING CHEN, Zhejiang University, China

TAO GAO, Huawei Technologies Co., Ltd., China

TONGTONG WANG, Huawei Technologies Co., Ltd., China

Flow scheduling plays a pivotal role in enabling Time-Sensitive Networking (TSN) applications. Current flow scheduling mainly
adopts a centralized scheme, posing challenges in adapting to dynamic network conditions and scaling up for larger networks. To
address these challenges, we first thoroughly analyze the flow scheduling problem and find the inherent locality nature of time
scheduling tasks. Leveraging this insight, we introduce the first distributed framework for IEEE 802.1Qbv TSN flow scheduling. In this
framework, we further propose a multi-agent flow scheduling method by designing Deep Reinforcement Learning (DRL)-based route
and time agents for route and time planning tasks. The time agents are deployed on field devices to schedule flows in a distributed
way. Evaluations in dynamic scenarios validate the effectiveness and scalability of our proposed method. It enhances the scheduling
success rate by 20.31% compared to state-of-the-art methods and achieves substantial cost savings, reducing transmission costs by
410× in large-scale networks. Additionally, we validate our approach on edge devices and a TSN testbed, highlighting its lightweight
nature and ease of deployment.

CCS Concepts: • Networks→ Cyber-physical networks; In-network processing; Packet scheduling.

Additional Key Words and Phrases: Time-Sensitive Networking, distributed scheduling, deep reinforcement learning

1 INTRODUCTION

Time-Sensitive Networking (TSN) has arisen as a promising networking technology in response to the advancement
of the Industrial Internet of Things (IIoT) and cyber-physical systems [38]. Evolving from traditional Ethernet, TSN
is proposed in IEEE 802.1 Standard [23] to offer deterministic, low-latency, and low-jitter transmission [21] for time-
critical applications [3, 9]. To achieve real-time and deterministic communications, TSN specifies the gate mechanism
Time-Aware Shaper (TAS) in IEEE 802.1Qbv [14] for flow scheduling, which controls the route and time schedules of
flows using the Gate Control List (GCL) in each switch.

The GCL is computed using various network factors, including network topology, flow model, and scheduling
constraints specified by the TSN standard. Since the GCL is loaded into the switch before operation, even minor changes
in the network status trigger a recomputation of the GCL to align with the updated network conditions. Thus, various
flow scheduling algorithms have been proposed to efficiently compute GCLs in IEEE 802.1Qbv time-sensitive networks.
Solver-based methods [6, 16, 25] model flow transmission rules as a set of constraints and feed them into Satisfiability

Authors’ addresses: Miao Guo, Zhejiang University, Yuquan Campus, 38 Zheda Road, Hangzhou, China, gm_oct@zju.edu.cn; Shibo He, Zhejiang
University, Yuquan Campus, 38 Zheda Road, Hangzhou, China, s18he@zju.edu.cn; Chaojie Gu, Zhejiang University, Yuquan Campus, 38 Zheda Road,
Hangzhou, China, gucj@zju.edu.cn; Xiuzhen Guo, Zhejiang University, Yuquan Campus, 38 Zheda Road, Hangzhou, China, guoxz@zju.edu.cn; Jiming
Chen, Zhejiang University, Yuquan Campus, 38 Zheda Road, Hangzhou, China, cjm@zju.edu.cn; Tao Gao, Huawei Technologies Co., Ltd., 156 Beiqing
Road, Beijing, China, tao.g@huawei.com; Tongtong Wang, Huawei Technologies Co., Ltd., 156 Beiqing Road, Beijing, China, tongtong.wang@huawei.com.

i

ii M. Guo, S. He and C. Gu, et al.

GCL ConfigGlobal
Info

Flow

Centralized Network Configuration (CNC)

Switch

Network Info Uploading

Scheduling
Agents

GCL

Configuration

t1t2t3

Queue
Resource

0 1 0...

0 0 1...

GCL
Transmision Transmission Cost

Network
scale 20 switches

Flow route
length 10 switches

Overall
transmission

distance
1+2+...+20=

210 hops

Transmission
cost 16800 bits

Link
Resource Q0

0
... Q7

...
...
...
...1

1
...
0

Global Info
Transmission

8

88

8

(a) Centralized: CNC centrally gathers global network informa-
tion (8 × 210 bit-link and 8 × 210 bit-queue resource information)
and configures the GCLs (8 × 8 × 210 bits) of all the field devices.

Transmission Cost

Network scale 20 switches

Flow route
length 10 switches

Overall
transmission

distance
10 hops

Transmission
cost 80 bits

2. Generate Time t2

3. GCL
Self-Config

t1t3Flow

Queue Resource
0 0 1...

Link Resource None

Time
Agents

1. Local Info
Transmit

GCL Self-
Config

Local
Info

Field Device Structure
Local Info Transmission

GCL
Transmission

None

8

(b) Distributed: Each field device on the flow route gathers local
information (i.e., 8-bit queue resource information) from its adja-
cent device to calculate and configure its own GCL.

Fig. 1. Centralized v.s. Distributed DRL scheduling schemes for a 20-switch linear TSN network. Assuming the length of the resource
information and GCL is 8, the distributed scheme significantly reduced the volume of exchanging information by 210×.

Modulo Theories (SMT) or Integer Linear Programming (ILP) solvers to search for the optimal solution. However, they
usually take a long time to search for solutions due to computational complexity. Heuristic methods [35, 41] reduce
the search time by narrowing down the search space. However, the designing processes are handcrafted and highly
dependent on domain knowledge and professional expertise [7, 11]. Recently, Deep Reinforcement Learning (DRL)
has emerged as a promising approach for flow scheduling due to its self-exploiting capability without any laborious
efforts. For instance, DRLS [42] calculates the flow routes by designing a DRL-based scheduler. Similarly, TTDeep [18]
proposes a DRL-based framework to jointly determine the route and time plans of flows.

Fig. 1a illustrates the typical scheduling process of the existing approaches, which adopt a centralized scheme. The
Centralized Network Configuration (CNC) collects global network information to calculate the GCL, and then configure
the GCLs on all filed devices. However, such a scheme has two critical scalability issues regarding: i) Network condition:
Current approaches share a common prerequisite that CNC has comprehensive knowledge of the network resources
and flows. As a result, in situations where network conditions are dynamic, i.e., emergency flow arrival and network
resources change due to manufacturing requirements, existing approaches need to stop the network transmission and
perform the above scheduling process again [29]; ii) Network size: Existing methodologies need to gather information
from the whole network for computation and disseminate GCLs to all field devices. The communication overhead and
configuration complexity are exacerbated by the expansion of the network size.

To address the scalability issue, our paper takes an important step in this domain — we introduce the first distributed
framework for IEEE 802.1Qbv TSN flow scheduling. As shown in Fig. 1b, our framework empowers individual field
devices to conduct GCL computation and configuration locally. This is achieved by utilizing local network information
obtained from the device within one hop. In such a distributed framework, even when flow variations and network
resources undergo frequent changes, each field device can swiftly update its GCL to align with the evolving network
conditions. Consequently, this approach results in a significant reduction in both communication overhead and
configuration complexity.

Our design is based on a key observation: the time planning process of flow scheduling exhibits inherent
locality, challenging the common belief that TSN flow scheduling is a global coupling combinatorial optimization
problem. Specifically, there is a mutual interdependence between time schedule and resource state. The offset time
assigned to each link impacts the resource state, which subsequently influences the selection of the offset time to
avoid finding resource conflicts. This interdependence involves two key resources: i) the link resource on the current

Towards Distributed Flow Scheduling in IEEE 802.1Qbv Time-Sensitive Networks iii

departure link, and ii) the queue resource on the next link along the route, as the flow enters the queue of the next link
upon departing from the current link. Consequently, for the time planning process, the relevant resource information
within a two-link range is sufficient, indicating that global knowledge is unnecessary.

Following this insight, our design further addresses three key challenges.
Searching Space Reduction: First, as flow scheduling requires both route and time solutions, jointly optimizing
them in a single step leads to vast search space and slow convergence. We tackle this by splitting scheduling into
sub-problems, i.e., route and time planning to reduce the search space of each problem. To solve them, we propose a
multi-agent DRL scheduling method by designing both route agent and time agent for route and time planning tasks,
respectively.
Effective Pattern Representation: Second, given the intricacies of flow scheduling, exploiting only link resources
leads to low schedulability due to its insufficiency to depict network features and constraints. We overcome it by
introducing queue resources to the system model and incorporating it into the DRL features, enhancing the exploration
ability and schedulability of agents.
Efficient Training Strategy: Third, on account of the inherent locality of the time planning task, we offload it to field
devices, enabling the time agent to explore and exploit the network locally. Unfortunately, the limited local knowledge
and stringent scheduling constraints often result in model instability and poor generalization. From experiments, we
observe a gradual convergence of model weights when training it in a complexity-increasing order of scheduling
constraints. Thus, we propose a general model training framework by customizing training curriculums with different
levels of scheduling constraint complexity, yielding model stability and desirable scheduling performance.

We implement our framework DiRTS (Distributed Reinforcement Learning for Flow Scheduling) and compare it
with other state-of-the-art methods. The results from experiments in dynamic scenarios show that our scheduling
success rate, on average, is 20.31% higher than DRLS method and DiRTS saves transmission costs by 410× in large-scale
networks compared to the centralized scheme. The contributions of this paper can be summarized as follows:

• We introduce the first distributed reinforcement learning framework for IEEE 802.1Qbv TSN scheduling by
offloading the time planning task to field devices, which guarantees scalability and low transmission cost.

• We propose a multi-agent DRL scheduling method by designing both route agent and time agent to jointly
determine the route and time schedule of flows. We find the inherent locality property of time planning tasks
and deploy time agents to field devices to perform scheduling distributedly.

• We develop an open-source dataset generation tool to ease the evaluation efforts on TSN scheduling research. It
can generate flows and network topologies allowing user-defined features. We evaluate the performance of the
proposed method with a network simulator, and validate its applicability on industry-level field devices and
TSN testbed.

The rest of this paper is organized as follows. Section 2 reviews the related works. Section 3 discusses the background
and system models of TSN, and elaborates on the scheduling problem and constraints. Section 4 presents the DiRTS
framework and analysis. Section 5 and Section 6 present the design of the route agent and time agent, respectively. In
Section 7, we provide details on the evaluation setup and results. We present the simulation results and the TSN testbed
results in Section 8. Section 9 discusses related issues. Finally, Section 10 concludes the paper.

2 RELATEDWORK

TSN Scheduling: TSN scheduling has been studied since the release of IEEE 802.1Qbv in 2015. The previous works can
be divided into three categories: solver-based, heuristic-based, and DRL-based scheduling. For solver-based scheduling,

iv M. Guo, S. He and C. Gu, et al.

TAS
Time-Sensitive

AVB

BE

Q7

Q6

Q0

Gate

t0
Q0
0

... Q7

... ...
...
...
...tn 1

1
...
0

GCL
in-port

in-port
out-port

Fig. 2. Switch model of TAS. The gates of queues are controlled by the GCL.

Craciunas et al. [6] propose a SMT model over linear integer arithmetic based on their prior studies on Time-Triggered
Ethernet (TTE) [5, 27, 28]. Thereafter, they formalize the scheduling problem as a set of constraints expressed with the
first-order theory of arrays [25] and then solve it with SMT solvers. Another aspect of solver-based studies formalizes
scheduling problems as ILP and adopts the ILP-based method [8, 26, 32, 40]. Solver-based methods generate the optimal
schedule by exploring the whole search space, which has exponential time complexity. If they are utilized to perform
scheduling in dynamic manufacturing scenarios that require frequent schedule computations, the time consumption
will be significant, degrading production efficiency. For heuristic-based scheduling, Nayak et al. [7] propose the No-wait
Packet Scheduling Problem (NW-PSP) to calculate TSN schedules, which is solved in Tabu search algorithm. Tabu
heuristic is also applied in Injection Time Planning (ITP) [41] to solve the scheduling problem in CQF-based TSN.
Besides the widely used Tabu heuristic, Pop et al. introduce a scheduling algorithm based on Greedy Randomized
Adaptive Search Procedure (GRASP) [11, 31]. For DRL-based scheduling, the related works are as follows.
DRL-based Scheduling: Thanks to the great generalization of DRL, many prior works exploit it in network scheduling.
Stampa et al. [34] propose an actor-critic policy gradient algorithm for routing optimization in SDN. Mao et al. [22]
utilizes graph neural network (GNN) and policy network to schedule data processing jobs on the computing clusters.
Chinchali et al. [4] present a reinforcement learning (RL) based scheduler to optimally schedule IoT traffic in mobile
networks. Huang et al. [17] use DRL to solve TDMA route and link scheduling problems in wireless sensor networks.
Sellami et al. [33] employ DRL to solve computing task scheduling problems in software-defined Fog-IoT networks.
However, the network protocol and flow transmission pattern of the above studies are totally different from TSN, which
can not be applied in TSN scheduling directly.

For DRL-based TSN scheduling, DRLS [42] and DeepScheduler [15] apply DRL to calculate the route of flows in TSN.
However, the DRL is only used in route planning, leaving the time planning task solved heuristically. TTDeep [18]
applies DRL to solve route and time planning problems in TSN. DeepCQF [2] utilizes DDQN to schedule flows in
CQF-based TSN, which is inapplicable in TAS.

The DRL-based methods mentioned above employ a centralized approach, which struggles to adapt to dynamic
network conditions and poses challenges for large-scale deployment. In contrast, our approach embraces a distributed
scheme, ensuring scalability in scheduling.

3 PRELIMINARY

3.1 Switch Model

In TSN, flows are categorized into three classes: time-sensitive flows, Audio/Video Bridging (AVB) flows, and best-effort
flows depending on their criticality and Quality-of-Service (QoS) requirements. Among them, time-sensitive flows have

Towards Distributed Flow Scheduling in IEEE 802.1Qbv Time-Sensitive Networks v

the stringent determinism requirement and the highest priority. To guarantee their deterministic, low-latency, and
low-jitter transmission, TSN specifies TAS for flow scheduling. As Fig. 2 shows, flows of different classes enter the
corresponding queues, which enable/disable the flow transmission with the open/close state of the gates to control the
departure time of time-sensitive flows from each switch. Since the gate state follows the predefined GCL, we calculate
the GCLs, i.e., determine the transmission time of flows on each switch to schedule the deterministic time-sensitive
flows. The scheduling of other classes of flows is of lower priority than time-sensitive flows and orthogonal to our work.

3.2 Network and Flow Model

The topology of a TSN network is modeled as a directed graph 𝐺 = {𝑉 , 𝐸}. The set of vertices 𝑉 represents all the
devices in the network, including the set of all end systems (end devices) denoted as 𝐸𝑆 and the set of all switches
denoted as 𝑆𝑊 . Hence 𝑉 = 𝐸𝑆 ∪ 𝑆𝑊 . End systems are responsible for sending and receiving flows while switches
are responsible for forwarding flows. The set of edges 𝐸 represents data links in the network. The network supports
full-duplex transmission. Two vertices 𝑣𝑎, 𝑣𝑏 ∈ 𝑉 determine two edges [𝑣𝑎, 𝑣𝑏] ∈ 𝐸 and [𝑣𝑏 , 𝑣𝑎] ∈ 𝐸. The transmission
rate of link [𝑣𝑎, 𝑣𝑏] is [𝑣𝑎, 𝑣𝑏] .𝑠 .

We use 𝐹 to denote a set of time-sensitive flows. In TSN, the flow patterns are complicated but fixed and can be
denoted by a 5-tuple consisting of source, destination, period, frame length, and maximum end-to-end delay:

∀𝑓𝑖∈𝐹, 𝑖∈[0, 𝑛 − 1],

𝑓𝑖 = {𝑠𝑟𝑐, 𝑑𝑠𝑡, 𝑝𝑒𝑟𝑖𝑜𝑑, 𝑠𝑖𝑧𝑒, 𝑑𝑑𝑙}. (1)

For a flow starting from 𝑣𝑎 and ending at 𝑣𝑏 , its route 𝑅𝑡 is an ordered sequence : [[𝑣𝑎, 𝑣𝑎+1], . . . , [𝑣𝑏−1, 𝑣𝑏]]. Since
the flow is periodic, we use 𝑓 [𝑣𝑎,𝑣𝑏]

𝑖,𝑚
to denote the transmission of the𝑚-th frame of flow 𝑓𝑖 on link [𝑣𝑎, 𝑣𝑏]. Frame

𝑓
[𝑣𝑎,𝑣𝑏]
𝑖,𝑚

is associated with the attribute pair (𝐿, 𝜙), which refers to transmission duration and offset on the link. The

transmission duration of frame on a link 𝑓 [𝑣𝑎,𝑣𝑏]
𝑖,𝑚

.𝐿 is calculated by 𝑓𝑖 .𝑠𝑖𝑧𝑒

[𝑣𝑎,𝑣𝑏] .𝑠 . 𝑓
[𝑣𝑎,𝑣𝑏]
𝑖,𝑚

.𝜙 is the start time (offset) for the

frame transmission on link [𝑣𝑎, 𝑣𝑏] in the period. If there is no proper offset for any frame 𝑓 [𝑣𝑎,𝑣𝑏]
𝑖,𝑚

, 𝑓𝑖 is unscheduable,
denoted as 𝑆 (𝑖) = 0, otherwise, 𝑆 (𝑖) = 1.

3.3 Scheduling Problem and Constraints

In this section, we introduce the scheduling problem and the constraints. For each TSN flow, the scheduling algorithm
outputs a route from its source to the destination and assigns offset for all the links along the route to form the GCLs
on switches. To guarantee the deterministic transmission of all the flows, the selection of frame offset 𝜙 and its route 𝑅𝑡
should comply with the following constraints within a hyper period containing all the frame occurrences, which is the
least common multiple (𝐿𝐶𝑀) of all the periods of flows as in Eq. 2.

𝑇𝑠𝑐ℎ𝑒𝑑 = LCM(𝐹 .𝑝𝑒𝑟𝑖𝑜𝑑𝑠). (2)

To stress it clearly, we utilize a simple scenario with two time-sensitive flows 𝑓1 and 𝑓2 in Fig. 3a. The constraints of
flow transmissions are shown accordingly in Fig. 3b.
Frame Constraint1: The offset of any frame has to be greater than or equal to 0. The entire transmission window
(offset plus transmission duration) has to fit within the period.

1The formulas of constraints are available in Appendices.

vi M. Guo, S. He and C. Gu, et al.

h1

h2

SW1 h3
Flow Src Dst Period ddl Rt

f1 h1 h3 5T 4T h1-SW1-h3
f2 h2 h3 5T 4T h2-SW1-h3

Flow Feature

(a) Example scenario. 1T represents a time slot.

Deterministic
Queue

Constraint
4T

Queue Conflict
queue 4T

Deadline
Constraint

2T

Beyond Deadline

T 4T 5T

Flow
Transmission

Constraint
Not Fully Received

2T

Beyond Period

Frame
Constraint

5T 6T4T 4T 5T3T

4T

Link
Constraint

Constraint Violated Case Scheduled Case

2T

Link Conflict
4T

(b) Scheduling constraints illustration of 𝑓1 and 𝑓2.

Fig. 3. Scheduling problem and constraints illustration.

Flow Transmission Constraint: The frame propagation of a flow must follow the sequential order along the routed
path.
Deadline Constraint: The end-to-end latency cannot exceed the deadline.
Link Constraint: Two frames routed through the same physical link in the network can not overlap in the time domain.
As Fig. 3a shows, the hyper period of 𝑓1 and 𝑓2 is 5T, thus the length of resource state is 5 time slots. In the violated case
of Link Constraint in Fig. 3b, the link resource state of 𝑆𝑊1 − ℎ3 impacted by 𝑓 1 and 𝑓2 are both [0, 0, 0, 1, 0], which
conflict with each other at time slot 4T, indicating potential frame loss. After scheduling, the ultimate link resource of

Towards Distributed Flow Scheduling in IEEE 802.1Qbv Time-Sensitive Networks vii

𝑆𝑊1 −ℎ3 is [0, 1, 0, 1, 0]. To choose a proper offset on a link (𝑆𝑊1 −ℎ3), the link resource on the current link is required
to examine the Link Constraint.
Deterministic Queue Constraint: Qbv standard reserves eight queues for flows of different priorities, among which
time-sensitive flows are assigned to one queue that is of the highest priority. To guarantee the deterministic arrival
order, queue-sharing flows must be scheduled so their arrival times are far apart to avoid interleaving. Thus, the
constraint isolates two different flows such that one flow can be transmitted to a shared queue only after the other
flow is dispatched from the queue. As Fig. 3b shows, 𝑓 1 and 𝑓 2 shares the same queue of 𝑆𝑊1 on link 𝑆𝑊1 − ℎ3. Here
we introduce the queue resource to depict this constraint. In the violated case of Deterministic Queue Constraint, the
queue resource of 𝑆𝑊1 (also say link 𝑆𝑊1 − ℎ3) impacted by 𝑓1 and 𝑓2 are [1, 0, 0, 0, 0] and [1, 1, 1, 0, 0], respectively,
which conflict each other at time slot 1T, meaning 𝑓2 starts to occupy the queue before 𝑓1 leaves it. Taking 𝑓2 as an
example, to determine the offset on the current link ℎ2 − 𝑆𝑊1, the queue resource information on the next link 𝑆𝑊1 −ℎ3
([1, 0, 0, 0, 0]) is needed to examine the Deterministic Queue Constraint as the offset on link ℎ2 − 𝑆𝑊1 determines the
start time of queue occupation on the next link. As a result, the offset of 𝑓2 on ℎ2 − 𝑆𝑊1 is adjusted from 0 to 2.
Objective: The optimization objective is maximizing the number of successfully scheduled flows formalized as Eq. 3:

Maximize
∑︁
𝑓𝑖 ∈𝐹

𝑆 (𝑖). (3)

4 DIRTS FRAMEWORK

4.1 Overview

Fig. 4 depicts the overview of DiRTS. The scheduling framework is implemented on two components: CNC and field
devices including both end devices and switches. CNC gathers the flow requirements and network topology, which are
fed into the route agent to generate flow routes. Each field device with a time agent deployed conducts time planning and
GCL configuration autonomously when the flow arrives. The training of agents is guided by the scheduling constraints
and the optimization objective to guarantee the quality of generated schedules.

4.2 Locality Analysis

To identify tasks suitable for distributed processing, we conduct an analysis of the locality characteristics of route and
time planning tasks.
Route Planning Task: To generate routes for flows, various attributes of edges between the source and destination
nodes need to be compared such as the edge-to-edge reachability and distance. Since the above attributes are not
self-discovered by a single node[36], they need to be transmitted and aggregated iteratively among edges in the
distributed scheme. As Fig. 5a shows, the transmission distance is 3 for device 𝑁6 to get the information of 𝑁1. As the
network enlarges, the largest transmission distance between any two nodes increases, raising the transmission cost.
Thus the distribution scheme is not suitable for route planning tasks. To avoid the increasing transmission cost, the
route planning agent works in CNC centrally, collecting the knowledge of network topology via topology discovery[24]
to generate the route.

It is worth mentioning that the centralized deployment of the route planning task does not contradict the distributed
reinforcement learning framework for 2 reasons: 1) For transmission cost, the requisite network information for the
route planning task is the spacial knowledge in topology connection of network nodes, which is limited and fixed
compared to the time-varying knowledge in network resource distribution required by the time planning task. It only

viii M. Guo, S. He and C. Gu, et al.

Flow

System
 M

odelling

Network Topology

Distance
matrix

Flow Requirements

f.src= f.dst=

Feature Extraction
N

etw
ork

Policy N
etw

ork

§

Route
Agent
§

§

§

Feature Extraction Network

Policy Network

Time
Agent

Flow Route

Centralized Network Configuration (CNC)

End Device Switch End DeviceSwitch

Queue
Resource

Info

Arrival time
Flow Info

Resource Info

1 0 0...
Queue Resource

Feature Extraction
N

etw
ork

Policy N
etw

ork

Time
prd ddl
frame

Headpayloadnext-hops

Link Resource
0 1 1...

§Distributed Time Generation on Field Device

Route

...

Fig. 4. Overview of DiRTS. The route agent is deployed in CNC to generate routes for flows. The time Agent is deployed in both CNC
and field devices. The time agent in CNC is used for module updating in the training phase. The time agents in field devices are used
for action generation, i.e., distributed time schedule generation in both training and scheduling phases.

needs a one-time initiation and triggers no extra transmission cost in dynamic flow variations. Besides, the topology
knowledge is available with the topology discovery function of CNC specified in IEEE 802.1Qcc[13]. 2) For configuration
complexity, the calculation of the centralized route planning task triggers no additional configuration. Additionally,
its results serve as the input of the time agent, which promotes the execution of the distributed time planning task to
avoid the complex GCL configurations by CNC.
Time Planning Task: The offset time of time-sensitive flows on each hop must satisfy 5 constraints as demonstrated
in Sec. 3.3. Among them, the Frame Constraint, Flow Transmission Constraint, and Deadline Constraint are all related
to flow attributes, i.e., period, arrival time, and deadline, which are carried with flow itself. The Link Constraint and
Deterministic Queue Constraint are related to the link resource on the current link and the queue resource on the next
link respectively, which are available within two links. Thus, the requisite information to examine the constraints on
time planning tasks is locally accessible on each hop, meaning the offset per hop can be inferred distributedly at the
corresponding field device.

The information accessing pattern for time calculation is demonstrated in Fig. 5b. When the flow reaches a certain
device, e.g., 𝑁1, the queue resource of the next link (𝑁3 − 𝑁5) and the link resource of the current link (𝑁1 − 𝑁3) are
required on device 𝑁1 to calculate the offset time on link 𝑁1 −𝑁3. Since the queue resource on the next link is accessible

Towards Distributed Flow Scheduling in IEEE 802.1Qbv Time-Sensitive Networks ix

1

2

3

(a)

Flow

Link Resource on N1-N3

Queue
Resource
on N3-N5 Route 1 0...

1

0 0...

Flow

Route

Resource info
transmission

Link

(b)

Fig. 5. Information transmission and aggregation needed for (a) distributed route planning task and (b) distributed time planning
task. In (a), the longest transmission distance is 3. In (b), the largest transmission distance remains constant at 1.

Time Agent
in CNC

End Device End Device

Loss Aggregate
Gradients Update

Resource
Info

Flow

Offset Time Offset Time Offset Time

Switch

Loss1 Loss2 LossN

Gradients
Update

Gradients
Update

Gradients
Update

Resource
Info

Fig. 6. Training process of DRL time agents. The time agent on the top is deployed in CNC. 1) Parameter Broadcasting refers to the
Gradients Update from the time agent in CNC to agents in field devices. 2) Local play is the process of offset time inference and loss
generation by the local time agent. The time agents in the field devices treat flow information and resource information as input and
output offset time and loss on each hop. 3) Central Update refers to the loss aggregation and gradients update of the time agent in
CNC based on the losses.

on the adjacent node (𝑁3) and the link resource is already available on 𝑁1, the largest transmission distance remains
constant at 1 irrespective of network expansion, demonstrating the great locality of the time planning task.

4.3 Distributed Working Pattern

To save transmission costs, we employ the distributed scheme for time planning tasks. The working pattern can be
divided into two phases: training and scheduling.
Training Phase: As Fig. 6 shows, the training process of distributed reinforcement learning for the time planning task
contains 3 steps: 1) Parameter Broadcasting: In the 𝑘th training round, denoting the model parameter of the time agent
in CNC as 𝜃𝑘 , CNC transmits 𝜃𝑘 to all the filed devices. 2) Local Play: Each device forwards flows. Specifically, when a
flow reaches the device 𝐷𝑖 (𝑖 = 1, 2, ..., |𝐷 |) along its route, the device gathers the local information and feeds it into the
time agent 𝜃𝑘 . The time agent then generates an offset time when the device forwards this flow to the next hop. Upon
the generation of the offset time, the loss 𝐿𝑖 (𝜃𝑘) (The opposite of reward expectation, see Sec. 5.3) is derived by the
local time agent to evaluate the quality of this output. 3) Central Update: At the end of round 𝑘 , the time agent in CNC
aggregates all the losses generated by the field devices and updates the model parameter to 𝜃𝑘+1 based on Gradient

x M. Guo, S. He and C. Gu, et al.

Network Info

Environment
Flow Info

...

scheduled fail

Agent
Feature Extraction Policy Network

Replay Buffer

Success Buffer Fail Buffer

.........

Update

State

Action

Reward

... ...
... ...

Fig. 7. The structure of reinforcement learning for route planning task in DiRTS. The agent generates an action according to the
current state of the environment. A reward is generated by the environment as the feedback of the action. The history data of the
triples are stored in a replay buffer to update the agent till convergence.

Descend (GD) as in Eq. 4.

𝜃𝑘+1 = 𝜃𝑘 − 𝛼∇
|𝐷 |∑︁
𝑖=1

𝐿𝑖 (𝜃𝑘), (4)

where 𝛼 refers to the learning rate. The training process repeats till the time agent converges. Note the training
contributes no communication cost to the scheduling process since training is a one-time effort independent of
scheduling.
Scheduling Phase: For the scheduling phase, agents on different devices work hop-by-hop, following the order of the
flow route. The scheduling computation on each hop utilizes the remaining time of frame forwarding within one time
slot, without consuming extra time slots. In this paper, each flow arrives incrementally in dynamic scenarios, thus each
agent schedules one flow at a time.

5 ROUTE AGENT

Route agent aims to generate the route planning for flows. As Fig. 7 shows, the reinforcement learning structure for
the route planning task is composed of two parts: agent and environment. In the process of reinforcement learning,
according to the current state 𝑆𝑡 given by the environment, the agent outputs an action 𝐴𝑡 , and then a reward 𝑅𝑡 is
generated by the environment to update the agent, which aims to maximize the reward. The agent keeps on updating
its model till convergence through the exchange of 𝑆𝑡 , 𝐴𝑡 , and 𝑅𝑡 . As is mentioned in Sec. 4.2, the requisite network
information for the route planning task is the fixed spatial knowledge in the topology connection of network nodes,
rather than the time-varying information of network resources. Thus the state modeling of the route agent excludes
the knowledge of network resources, which further reduces network information uploading cost as Fig. 1 shows. By
transmitting and utilizing the network resource information locally, it enables the distributed implementation of the
time planning tasks and decouples the route planning and time planning tasks.

5.1 State Modeling

As Fig. 8 shows, the state modeling is achieved by the feature extraction network, which initially extracts the raw
feature from the environment, and leverages Graph Neural Network (GNN) to generate the GNN feature. Then, the
above two features are concatenated to represent the State 𝑆𝑡 .
Raw Feature: For each edge 𝑒 , we utilize 𝑟𝑒 to represent its raw feature, which is composed of raw space feature 𝛼𝑒 and
raw resource feature 𝛽𝑒 . Raw space feature 𝛼𝑒 depicts the space characteristic of 𝑒 in the network topology. It consists of

Towards Distributed Flow Scheduling in IEEE 802.1Qbv Time-Sensitive Networks xi

Raw Resource Feature

Num of
 flows

Num of
flows on
pre-hop
Flow prd

Raw Space Feature

Visited

Degree

Feature Extraction Network

1 2
2

12

10
visited

flows

flows

pre hop

Raw Feature

M
LP

Policy Network

2 3

0pre hop 1

23 f.prd=8

Distance
to src

Distance
to dst

Adjacent
to pre hop

Graph
Neural
Network
(GNN)

R
aw

 Feature
G

N
N

 Feature

g() g()

g() g()

GNN Feature
Softm

ax

Edge
Distribution

Fig. 8. The model of route agent. The model of composed of a feature extraction network and a policy network.

5 parts: 1) Whether this edge is adjacent to the edge of the last action. 2) The distance between this edge and the source
node of the current flow. 3) The distance between this edge and the destination node of the current flow. 4) Whether
this edge has been visited. 5) The number of adjacent edges. Raw resource feature 𝛽𝑒 depicts the resource state of edge
𝑒 and features of the current flow. It consists of 3 parts: 1) The degree of congestion on this edge, which is the number
of scheduled flows on this edge. 2) The degree of congestion on the previous-hop edge. 3) The period of current flow.
GNN Feature: To efficiently adapt to network topologies and fully extract topology features, we apply GNN to get the
embedding vector of each edge. For each link 𝑒 , GNN takes its raw feature vector 𝑟𝑒 as input and performs per-edge
embedding. Edge 𝑒 absorbs information from all its neighbors and the output embedding vector is denoted by Eq. 5:

𝑟𝑘𝑒 = 𝑔[
∑︁

𝑢∼𝜖 (𝑒)
𝑓 (𝑟𝑘−1𝑢) + 𝑟𝑘−1𝑒], 𝑘 = 1, 2, ... (5)

where 𝑓 and 𝑔 are both activation functions, and 𝜖 (𝑒) denotes all neighbor edges of 𝑒 . Each edge collects all information
of its k-order neighbors by iterating this computation 𝑘 times. The ultimate feature vector 𝑣𝑒 representing any edge 𝑒 of
state 𝑆𝑡 is 𝑣𝑒 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑟𝑒 | |𝑟𝑘𝑒).

5.2 Action Modeling

The action is generated by the policy network. As Fig. 8 illustrates, the policy network is composed of two parts:
multiple layer perception (MLP) and a softmax layer. The input of the policy network can be denoted as a matrix
𝑀𝑟𝑜𝑢𝑡𝑒 = [𝑣𝑇1 , 𝑣

𝑇
2 , . . . , 𝑣

𝑇
𝑚] ∈ 𝑅𝑚×𝑛 , where m is the number of edges and 𝑣𝑖 ∈ 𝑅𝑛 is the feature vector of the 𝑖th edge.

The MLP takes𝑀𝑟𝑜𝑢𝑡𝑒 as input and generates score vector s = [𝑠1, 𝑠2, . . . , 𝑠𝑚] for all the edges. Thereafter, softmax
layer turns s into probability distribution of the edges with softmax function:

𝑝𝑖 =
𝑒𝑥𝑝 (𝑠𝑖)∑𝑚
𝑗=1 𝑒𝑥𝑝 (𝑠 𝑗)

. (6)

The edge is sampled by the probability distribution.

5.3 Model Updating

Policy Gradient: To update the policy network, we use the policy gradient algorithm by calculating the gradient of
the expected reward relative to the parameters. In the policy gradient algorithm, the goal of the route agent is to find an

xii M. Guo, S. He and C. Gu, et al.

Algorithm 1: Route Agent Training Procedure.
Input: Flow set 𝐹 , Network topology𝐺 , Sample number 𝑁

1 Initialize agent parameter 𝜃 , replay buffer Bf
2 for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 ← 1 : 𝐾 do
3 𝐹𝑓 𝑎𝑖𝑙_𝑠𝑒𝑡 = ∅
4 for 𝑒𝑎𝑐ℎ 𝑓𝑖 ∈ 𝐹 do
5 𝑓𝑖 .𝑠𝑡𝑎𝑡𝑒 = 𝐼𝑛𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒,𝑇𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦𝑠𝑒𝑡 = ∅
6 while 𝑓𝑖 .𝑠𝑡𝑎𝑡𝑒 == 𝐼𝑛𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 do
7 Get state 𝑆𝑡 , sample link 𝑙𝑖𝑛𝑘 by 𝑝 (𝑙𝑖𝑛𝑘 |𝑆𝑡)
8 Take action𝐴𝑡 = 𝑙𝑖𝑛𝑘 , get reward 𝑅𝑡 and 𝑓𝑖 .𝑠𝑡𝑎𝑡𝑒
9 Store transition (𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡) in𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦𝑠𝑒𝑡

10 if 𝑓𝑖 .𝑠𝑡𝑎𝑡𝑒 == 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 or 𝐹𝑎𝑖𝑙 then
11 break
12 end
13 end
14 for 𝑒𝑎𝑐ℎ (𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡) ∈ 𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦𝑠𝑒𝑡 do
15 Decay and update reward 𝑅𝑡 =

∑𝑇
𝑞=𝑡 𝛾

𝑞−𝑡𝑅𝑞
16 end
17 if 𝑓𝑖 .𝑠𝑡𝑎𝑡𝑒 == 𝐹𝑎𝑖𝑙 then
18 𝐹𝑓 𝑎𝑖𝑙_𝑠𝑒𝑡 ← 𝑓𝑖

19 𝑆𝑡𝑜𝑟𝑒_𝑖𝑛_𝑏𝑢𝑓 𝑓 𝑒𝑟 (𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦𝑠𝑒𝑡 , 𝐵𝑓 .𝑓 𝑎𝑖𝑙_𝑏𝑢𝑓 𝑓 𝑒𝑟)
20 else
21 𝑆𝑡𝑜𝑟𝑒_𝑖𝑛_𝑏𝑢𝑓 𝑓 𝑒𝑟 (𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦𝑠𝑒𝑡 , 𝐵𝑓 .𝑠𝑢𝑐_𝑏𝑢𝑓 𝑓 𝑒𝑟)
22 end
23 end
24 // Learn from failed flows in replay buffer
25 for each 𝑓𝑗 ∈ 𝐹𝑓 𝑎𝑖𝑙_𝑠𝑒𝑡 do
26 𝑆𝑎𝑚𝑝𝑙𝑒_𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 (𝑁, 𝑓𝑗 , 𝐵𝑓 .𝑓 𝑎𝑖𝑙_𝑏𝑢𝑓 𝑓 𝑒𝑟)
27 𝑆𝑎𝑚𝑝𝑙𝑒_𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 (4𝑁, 𝑓𝑗 , 𝐵𝑓 .𝑠𝑢𝑐_𝑏𝑢𝑓 𝑓 𝑒𝑟)
28 Exploit Eq. 7 and Eq. 8 to update parameter 𝜃 .
29 end
30 end

optimal strategy 𝜋 : 𝑆 ×𝐴→ [0, 1], to maximize the reward value expectation 𝑅𝜋 = 𝐸 [∑𝑛−1𝑡=0 𝛾
𝑡𝑅(𝑆𝑡 , 𝐴𝑡)], where 𝑆,𝐴

and 𝛾 refer to state, action and reward decay factor respectively. The gradient of the policy network is derived as Eq. 7.

∇𝜃𝑅(𝜋𝜃) = 𝐸𝐴∼𝜋𝜃 [∇𝜃 𝑙𝑜𝑔(𝜋𝜃 (𝐴|𝑆))𝑅(𝑆,𝐴)] . (7)

Here 𝜃 refers to all parameters of the policy network, which is updated as Eq. 8:

𝜃 = 𝜃 + 𝛼∇𝜃𝑅(𝜋𝜃), (8)

where 𝛼 is the learning rate.
In the above analysis, 𝑅(𝑆𝑡 , 𝐴𝑡) refers to the reward function. Since we aim to find the route path for as many flows

as possible, we set the reward function as follows:

𝑅(𝑆𝑡 , 𝐴𝑡) = 𝜁 × 𝑅𝑓 𝑖𝑛𝑖𝑠ℎ + 𝜂 × 𝑁ℎ𝑜𝑝 , (9)

𝑅𝑓 𝑖𝑛𝑖𝑠ℎ =

2, 𝑓 𝑙𝑜𝑤 𝑟𝑒𝑎𝑐ℎ𝑒𝑠 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛

0, 𝑖𝑛 𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠

−1, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑓 𝑎𝑖𝑙𝑒𝑑

(10)

where 𝑁ℎ𝑜𝑝 refers to the number of hops the flow goes through at state 𝑆𝑡 , which avoids flow picking up redundant
edges. 𝜁 and 𝜂 are both hyperparameters.

Towards Distributed Flow Scheduling in IEEE 802.1Qbv Time-Sensitive Networks xiii

Algorithm Design: Alg. 1 shows the training procedure of the route agent. We train the route agent for 𝐾 episodes.
In each episode, we find routes for all the flows in lines 4-12. During flow routing, we get a transition (𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡) by
finding an edge in each hop until the flow is successfully routed or fails. Lines 14-16 perform reward decay and then all
the transitions are stored in the replay buffer according to the flow routing state (i.e., Success or Fail) in lines 17-22. In
the training procedure (lines 25-29), we first sample training data of unsuccessfully routed flows from the replay buffer
as in Fig. 7 and then exploit the data to update the parameter 𝜃 of the policy network. Specifically, as shown in Fig. 7,
the replay buffer is composed of a success buffer and a fail buffer. A flow would be successfully scheduled or fail to be
scheduled in different episodes. The trajectories of each flow in different episodes are stored in the success or fail buffer
according to the scheduling results in different episodes. Thus, trajectories would be in both success buffer and fail
buffer for a specific flow. We take the training of route agent which schedules three flows 𝑓1 − 𝑓3 as an example. At
the start of the k-th episode, we first initiate the flow set of unscheduled flows 𝐹𝑓 𝑎𝑖𝑙_𝑠𝑒𝑡 . Then we schedule each flow
with the current agent parameter. Taking the scheduling of 𝑓1 as an example, the selection of each link is an action
till scheduling success (finding the feasible path) or failure of 𝑓1 occurs (a specific link selection fails to constitute a
feasible path). The scheduling process of 𝑓1 till success or failure generates a sequential trajectory of all the transitions
[(𝑆1, 𝐴1, 𝑅1), (𝑆2, 𝐴2, 𝑅2), ..., (𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡)], which is stored in 𝑇𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦𝑠𝑒𝑡 . Then we perform reward decay for all the
reward values 𝑅𝑛 (1 ≤ 𝑛 ≤ 𝑡) in𝑇𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦𝑠𝑒𝑡 . We store𝑇𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦𝑠𝑒𝑡 of 𝑓1 in success buffer or fail buffer according to
its scheduling result in the k-th episode. After the scheduling of all the flows 𝑓1 − 𝑓3 is finished, we store the unscheduled
flows into 𝐹𝑓 𝑎𝑖𝑙_𝑠𝑒𝑡 . In the learning phase of the k-th episode, we learn from the historical trajectories of these failed
flows. Assuming 𝑓1 fails to be scheduled, first, we sample transitions (𝑆𝑛, 𝐴𝑛, 𝑅𝑛) of 𝑓1 from 𝑓1’s historical success buffer
and fail buffer. Since we intend to let the route agent learn from the successful experiences. We sample 4N transitions
from the successful buffer and N transitions from the fail buffer. Then we exploit Eq. 7 and Eq. 8 with the sampled
transitions to update the parameters of the route agent. We keep repeating the above process for K times.

6 TIME AGENT

Time agent aims to generate offset time on each hop of the flow. The structure of DRL process for time planning tasks
is similar to that of route planning tasks shown in Fig. 7, which takes the network information and flow requirements
as state and generates the offset time slot at the current hop as an action.

6.1 State Modeling

As Fig. 9 shows, the feature extraction network initially extracts raw features from the environment and then adds
positional encoding to it, which then forms the current state 𝑆𝑡 .
Raw Feature: As analyzed in Sec. 4, offset determination shows great locality by considering flow attributes, the
resource on the current link and the queue resource on the next link. Thus the raw feature of time determination is
categorized in these three aspects as Table 1. As both link and queue resources of the current link are available on the
current hop, we incorporate both of them in the feature to fully extract the network information. In the raw feature, the
resource of the link or queue is represented as a vector with a length of the hyper period. For example, if flow 𝑓𝑖 passes
through link 𝑎, with the offset, the period and the hyper period being 2, 4, and 8, respectively, the link resource of
link 𝑎 is [0, 0, 1, 0, 0, 0, 1, 0], with each element representing a resource block. Each feature shown in Table 1 is depicted
in a 0/1 vector 𝑣𝑒𝑐𝑖 , thus the raw time feature on each hop is 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑟𝑎𝑤 = [𝑣𝑒𝑐1, 𝑣𝑒𝑐2, . . . , 𝑣𝑒𝑐7], the size of which is
7 × ℎ𝑦𝑝𝑒𝑟𝑝𝑒𝑟𝑖𝑜𝑑 .

xiv M. Guo, S. He and C. Gu, et al.

0
1

0 ...
... ...

0

1.0
1.0 ...

... ...

...
... ..

.
...

...

...

0.2

0.3
1 ...

... ...

0
1

0 ...
...
... ..

.
...

...

...
...

...

...

Feature Extration Network

...

1
0

0 ...
... ...

...
... ..

.
...

...

...
0

0
0 ...

... ...

...
... ..

.
...

...

...
0.9

0.8
1.0 ...

... ...

...
... ..

.
...

...

...
... ..

.
...

...

-0.8

0.3
1.0 ...

...

...

-0.3

-0.3
1.0 ...

... ...

0

1
1 ...

... ...

0

1.8
1 ...

... ...

...
... ..

.
...

...

...

-0.3

-0.3
1 ...

...

... ..
.

...
...

...

Reshape

Raw Time Feature

HyperPeriod

7

Positional Encoding
Time

Distribution

Policy Network

Softm
ax

M
LP

Fig. 9. The model of time agent. The feature extraction network is composed of raw time features and positional encoding.

0 250 500 750 1000 1250 1500 1750 2000
episode

0.2
0.1
0.0
0.1
0.2

G
ra

di
en

t Original Data Simplified Data

Fig. 10. The training gradients of two scenarios: using 1) original data and 2) simplified data to train agent.

Positional Encoding: To enable the model to make use of different feature vectors, we inject information about the
relative position of the feature vectors[37] by adding positional encodings to the raw time feature 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑟𝑎𝑤 . The
positional encodings have the same size as 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑟𝑎𝑤 . The computation of positional encodings is shown in Eq. 11:

𝑃𝐸 (𝑝𝑜𝑠, 2𝑖) = 𝑠𝑖𝑛(𝑝𝑜𝑠

100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙
)

𝑃𝐸 (𝑝𝑜𝑠, 2𝑖 + 1) = 𝑐𝑜𝑠 (𝑝𝑜𝑠

100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙
), (11)

where 𝑝𝑜𝑠 is the position of the encodings (i.e., the row number),𝑑𝑚𝑜𝑑𝑒𝑙 is the columnwidth, and 𝑖 = 0, 1, . . . , 𝑑𝑚𝑜𝑑𝑒𝑙/2−1.

6.2 Action Modeling

For the time agent, each action corresponds to an offset decision on the current link. As illustrated in Fig. 6, the time
agent works in a distributed learning scheme. Each device generates its action by choosing a proper offset on the
current link. The policy network of the time agent is composed of a MLP and a softmax layer. The input of the policy
network can be denoted as a matrix 𝑀𝑡𝑖𝑚𝑒 = 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑟𝑎𝑤 + 𝑃𝐸 ∈ 𝑅7∗ℎ𝑦𝑝𝑒𝑟𝑝𝑒𝑟𝑖𝑜𝑑 . The MLP takes 𝑀𝑡𝑖𝑚𝑒 as input and
generates score vector 𝑠 = [𝑠1, 𝑠2, . . . , 𝑠ℎ𝑦𝑝𝑒𝑟𝑝𝑒𝑟𝑖𝑜𝑑] for all the time slots within hyperperiod. Thereafter, the softmax
turns 𝑠 into a probability distribution, according to which the time slot is sampled.

6.3 Model Updating

Training Framework Design: To update the model of the time agent, we use policy gradient as described in Sec. 5.3.
However, the complex constraints and limited local knowledge lead to model instability. As Fig. 10 shows, if we feed
the original network and flows into the model, the gradients of the model oscillate, indicating that the agent learns

Towards Distributed Flow Scheduling in IEEE 802.1Qbv Time-Sensitive Networks xv

Table 1. Raw Feature of Time Agent.

Feature Class Feature Content Relevant Constraint

Flow Attributes

Flow Period Frame Const

Flow Deadline Deadline Const

The Number of
Left Hops to Dst

Frame & Deadline
Const

Offset Time on
the Previous Hop

Flow Transmission
Const

Resource on the
Current Link

The Link Resource Link Const

The Queue Resource Deterministic Queue Const

Resource on the Next Link The Queue Resource Deterministic Queue Const

Link

L1
L2

0
1

0 ...
... ...

...

...
...

...

...
...

...

...

Init the Resource

O
ffset Tim

e

Policy N
etw

ork

Learn
From

M
odel Transfer

0
0

0 ...
00

0
0

0 ...
00...

0 0

0

Raw Time Feature

HyperPeriod
0

1
1 ...

... ...

0

0

Flow
Attributes

Network
Resource

4

3
Environment

Flow

0 ... 0

Curriculum1

0
1

0 ...
... ...

1
0

0 ...
01

Raw Time Feature
1

1...
00...

1 1

1

HyperPeriod
0

1
1 ...

... ...

0

1

Flow
Attributes

Network
Resource

4

3

Learn
From

Environment

Curriculum2

0

Feature Extration Network

...
...

...

...
...

...

...

Update the Resource

O
ffset Tim

e

Policy N
etw

ork
from

 C
urriculum

1

...

...

...

Link
Res

Queue
Res
0 ... 0
0 ... 00 0...

L1 L2

Link

L1
L2

Flow

1 ... 0

Link
Res

Queue
Res
0 ... 0
0 ... 10 1...

L1 L2

Resource

Resource

Fig. 11. Training curriculums for time agents. Curriculum 1 inits all the resource vectors to 0. The policy network only learns valid
information from the flow attributes in the raw time feature. Curriculum 2 updates resource vectors after each scheduling action. The
policy network learns from both valid information of flow attributes and network resources.

nothing from the original data. Surprisingly, we observe that the gradients will converge if we simplify the training
data by removing the resource conflict among flows to make the agent only learn part of the scheduling constraints. It
gives us a hint that we can divide training into different phases based on the complexity of constraints rather than
make the agent learn all the constraints once and for all to avoid model instability.

As a result, we customize curriculums for the agent in different phases as Fig. 11. In Curriculum 1, we train the
time agent to obey the constraints relevant to the flow attributes. To achieve that, each flow in the training set is
scheduled after the network resource is set to the initial state, i.e., no link or queue in the network is occupied. In
Curriculum 2, after the agent learns flow attributes, we train the agent to satisfy the Link and Deterministic Queue
Constraints relevant to the network resource. To this end, after each flow is scheduled, the queue and link resources of

xvi M. Guo, S. He and C. Gu, et al.

Table 2. Reward Design.

Reward Condition

𝜉 − [(𝑜 𝑓 𝑓 𝑠𝑒𝑡 + 𝑁𝑙𝑒 𝑓 𝑡𝐻𝑜𝑝) − 𝑝𝑒𝑟𝑖𝑜𝑑] 𝑜 𝑓 𝑓 𝑠𝑒𝑡 > 𝑝𝑒𝑟𝑖𝑜𝑑 − 𝑁𝑙𝑒 𝑓 𝑡𝐻𝑜𝑝
𝜉 − (𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝐻𝑜𝑝 − 𝑜 𝑓 𝑓 𝑠𝑒𝑡) 𝑜 𝑓 𝑓 𝑠𝑒𝑡 < 𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝐻𝑜𝑝

𝜉 − [(𝑜 𝑓 𝑓 𝑠𝑒𝑡 − 𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑓 𝑖𝑟𝑠𝑡𝐻𝑜𝑝) − 𝑑𝑑𝑙] 𝑜 𝑓 𝑓 𝑠𝑒𝑡 − 𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑓 𝑖𝑟𝑠𝑡𝐻𝑜𝑝 > 𝑑𝑑𝑙

𝜉 − 𝑁𝑙𝑖𝑛𝑘_𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡 𝑙𝑖𝑛𝑘 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠

𝜉 − 𝑁𝑞𝑢𝑒𝑢𝑒_𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡 𝑞𝑢𝑒𝑢𝑒 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠

each link must be updated accordingly, from which the agent learns to avoid resource conflict, and thus to obey Link
and Deterministic Queue Constraints.
Reward Design: The formula of model updating also follows Eq. 7 and 8. The difference between route agent and time
agent updating is the reward definition as the two tasks comply with different rules. Since the offset determination
considers the constraints in Table 1, the rewards are defined accordingly as Table 2, in which the reward is generated
based on the degree to which different constraints are followed or violated. For example, if the generated offset is
less than the offset on the previous hop (i.e., violating Flow Transmission Constraint), the reward must deduct from
the difference to penalize it. Here, the 𝑁𝑙𝑒 𝑓 𝑡𝐻𝑜𝑝 is the number of left hops to the destination, 𝑜 𝑓 𝑓 𝑠𝑒𝑡 is the action
taken on the current link, 𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝐻𝑜𝑝 and 𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑓 𝑖𝑟𝑠𝑡𝐻𝑜𝑝 are the offset time on the previous link and the first
link, 𝑁𝑙𝑖𝑛𝑘_𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡 and 𝑁𝑞𝑢𝑒𝑢𝑒_𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡 are the numbers of resource blocks where conflict happens on link and queue
respectively, and 𝜉 is the hyperparameter.

7 EVALUATION

7.1 Experimental Setup

Baseline: We compare DiRTS with six centralized algorithms, i.e., SPF_early [12], DRLS+LD [42], DeepScheduler
(DS) [15], TTDeep [18], ALAP [30], and ILP [1]. SPF_early searches the shortest path and allocates the earliest valid slot
to each hop. DRLS and DS both search routes with DRL while the time slot is assigned in Low Degree (LD) and As Soon
As Possible (ASAP) heuristic, respectively. TTDeep searches both route and time slot with DRL. ALAP searches the
shortest path and allocates the time slot as late as possible to minimize transmission delay. ILP generates the optimal
schedules with ILP solvers by traversing the whole search space.
Network Setting: We conduct experiments on three typical industrial topologies: ring, linear, and tree [41]. The
network scale range is 6-40 nodes. The number of end devices connected to each switch is randomly selected from
the set {1, 2, 3}. The link bandwidth is 1Gbps and the time slot length is set to 250𝜇𝑠 to allow the transmission of one
Maximum Transmission Unit (MTU)-sized frame and the scheduling computation on each hop. For flow generating,
the source and destination of each flow are randomly selected. The frame size is randomly generated from 64 to 1500
Bytes. The period is selected from 2, 4, 8, 16 time slots. The deadlines are restricted randomly from 20-30 ms. We
only consider the case of unicast since the multicast flows can be split into multiple unicasts. The combinations of
network topologies and flows make up the training set used to train the agents, which is generated with a self-designed
TSN dataset generation tool2. For the experiment setup in Sec. 7.2, the network parameter and flow attributes are in
accordance with the above setting, unless stated otherwise.

2https://github.com/gimmyy/TSN-data-set-generation

Towards Distributed Flow Scheduling in IEEE 802.1Qbv Time-Sensitive Networks xvii

8
60

100
140 Optimal (ILP) DiRTS

SPF_early
DRLS+LD
ALAP
TTDeep
DS

6 12 20 24 28 32 36 40
Node Number

0

2
3

Ti
m

e
(s

)

(a)

6 12 20 24 28 32 36 40
Node Number

40
50
60
70
80
90

100

Su
cc

es
s R

at
e

(%
) Optimal (ILP)

DiRTS
SPF_early
DRLS+LD
ALAP
TTDeep
DS

(b)

6 12 20 24 28 32 36 40
Node Number

30

40

50

60

70

R
es

ou
rc

e
U

til
iz

at
io

n
(%

)

Optimal (ILP)
DiRTS
SPF_early
DRLS+LD
ALAP
TTDeep
DS

(c)

Fig. 12. Performance of algorithms in different network scales. (a) Execution time. The inference time of ILP exceeds DiRTS by 200×.
(b) Scheduling success rate. DiRTS remains the highest among time-saving algorithms. (c) Resource utilization.

Network Condition: We focus on dynamic scenarios where each flow is dynamically injected into the network and
scheduled incrementally. Once a flow is scheduled, its route and time schedule are fixed, i.e., the resources it takes
remain unchanged.
Parameter Setting: The number of iterations in GNN is 8. The lengths of the raw feature and GNN feature of the route
agent are both 8. The MLP in the route agent contains 4 FC layers with dimensions 32, 16, 8, and 1. The parameters 𝜁
and 𝜂 of routing reward are set to 10 and -0.1 respectively. The MLP in time agent includes 4 FC layers with dimensions
128, 64, 32, 16. The parameter 𝜉 in time reward is -40. The activation function is Leaky_Relu. Adam optimizer with a
learning rate of 0.002 is adopted. The reward decay factor is 0.8 and we train agents for at least 2000 episodes.

We conduct experiments on a server with an Intel Xeon Silver 4210R Processor (2.40 GHz with 13.75 MB cache) and
252 GB RAM.
Evaluation metrics: 1. Scheduling success rate is the proportion of successfully scheduled flows relative to the total
number of flows. A high scheduling success rate indicates that most flows are scheduled successfully. Note that we set
all network flows as time-sensitive flows in our setup to understand the performance of various approaches. In practice,
time-sensitive flows typically occupy a small proportion of all network flows. Therefore, even achieving a success
rate of less than 100% can still effectively handle all flows, depending on the proportion of time-sensitive flows [39]. 2.
Resource utilization is the proportion of the allocated time slots over the total time slots on all the links. A high resource
utilization means the devices are fully utilized. 3. Execution time is the time spent to infer the schedule results of all the
flows, which is expected to be minimized.

7.2 Experimental Results

7.2.1 Performance in Different Network Scales.

Setup: We set the node number of the network from 6 to 40. We fix the flow number at 200 and adopt ring topology to
test the scheduling performance of all the algorithms. Since ILP can produce the optimal solution, we normalize the
outcome of other algorithms with the results of ILP.
Results: Fig. 12a shows the execution time of different algorithms. The execution time of ILP grows exponentially with
the network scale, which is intolerable in time-critical industrial scenarios. In contrast, the execution time of DiRTS is
below 1s. In the 40-node scenario, the overall execution time is 0.82s, meaning the scheduling time cost for a single
flow is 4.1ms on average. Since the interval of dynamic flow requirement should be no less than the flow deadline (i.e.,
20-30ms), the least flow interval is 30ms. For this interval value per new flow requirement, the scheduling time of 4.1ms
is feasible. DRLS+LD takes less time because the time planning part exploits the heurist method which selects the time
slot with the most adequate resources. This heuristic calculation is a one-step judgment that gets rid of iteration and

xviii M. Guo, S. He and C. Gu, et al.

200
300
400

Optimal (ILP)

DiRTS
SPF_early
DRLS+LD
ALAP
TTDeep
DS

400 440 480 520 560 600
Flow Number

0
4
8

12

Ti
m

e
(s

)

(a)

400 440 480 520 560 600
Flow Number

40
50
60
70
80
90

100

Su
cc

es
s R

at
e

(%
) Optimal (ILP) DiRTS

SPF_early
DRLS+LD
ALAP
TTDeep
DS

(b)

400 440 480 520 560 600
Flow Number

40
45
50
55
60
65

R
es

ou
rc

e
U

til
iz

at
io

n
(%

)

Optimal (ILP)
DiRTS
SPF_early
DRLS+LD
ALAP
TTDeep
DS

(c)

Fig. 13. Performance of algorithms in different traffic volumes. (a) Execution time. The inference time of ILP exceeds DiRTS by
200×. The execution time of all algorithms increases with the flow number but only that of ILP is recognizable in the time scale. (b)
Scheduling success rate. DiRTS remains the highest among time-saving algorithms. (c) Resource utilization.

search. DS uses more time because, in the time planning task, it conducts an iterative search in case of the infeasibility of
the earliest time slot, which is more time-consuming. As Fig. 12b shows, the average success rate of the proposed DiRTS
is the highest among the time-saving algorithms, exceeding DRLS+LD by 20.31% on average. The reason is that DiRTS
dynamically learns the generic scheduling rules and the current network state instead of following the solid heuristic,
leading to great generalization and scalability in different scenarios. Meanwhile, DiRTS integrates queue resources
into the features of the time agent, making the network representation more comprehensive and thus enhancing its
exploration ability. For all the centralized methods, only ILP outperforms DiRTS since it takes a global view of the whole
network to generate schedules at the cost of large time consumption. Although other centralized methods collect global
knowledge, they use it separately by solving the scheduling problem hop by hop and utilizing only local knowledge to
guide the scheduling at each hop, which fails to take advantage of the global view. As mentioned before, the scheduling
success rate does not have to be 100% because, in practical scenarios, time-sensitive flows typically occupy a relatively
modest proportion, and a lower success rate than 100% could sufficiently cover all the flows [39]. As Fig. 12c shows, the
resource utilization of DiRTS remains the highest among the time-saving algorithms. The average increases of DiRTS
compared to SPF_early, DRLS+LD, DS, ALAP, and TTDeep are 4.32%, 6.97%, 3.94%, 11.86%, and 4.02%. The resource
utilization increase is contributed by the increase of successfully scheduled flows, which occupies more idle resources.
The reason for the resource utilization degradation of all the algorithms as the network enlarges is that the total flow
number is fixed while the overall network resource keeps growing.

7.2.2 Performance in Different Traffic Volumes.

Setup:We set the flow number from 400 to 600 and adopt the 40-node ring topology to test the scheduling performance
of all the algorithms.
Results: Fig. 13a shows the execution time of algorithms in different traffic volumes. At flow number 600, the execution
time of ILP exceeds the DiRTS by 200×, which is unacceptable in time-critical industrial scenarios. In contrast, the
execution time of DiRTS is below 2s. Fig. 13b depicts the scheduling success rate of different algorithms. The average
gap between DiRTS and DRLS+LD is 13.49%. At flow number 600, the scheduling success rate of DiRTS reaches 80%,
outperforming DRLS+LD by 13.91%. DiRTS shows great scalability to dynamic flow requirements as the scheduling
success rate increases with the dynamic flow number. The reason is that the RL agent acquires robust feature extraction
capability to cope with diverse flow sets. As Fig. 13c shows, the resource utilization of DiRTS remains the highest
among the time-saving algorithms. The average increases of DiRTS compared to SPF_early, DRLS+LD, DS, ALAP and

Towards Distributed Flow Scheduling in IEEE 802.1Qbv Time-Sensitive Networks xix

75

95 Optimal (ILP) DiRTS
SPF_early
DRLS+LD
ALAP
TTDeep
DS

Ring Linear Tree
Topology

0
1
2
3
4

Ti
m

e
(s

)

(a)

Ring Linear Tree
Topology

20

40

60

80

100

Su
cc

es
s R

at
e

(%
) Optimal (ILP) DiRTS

SPF_early
DRLS+LD
ALAP
TTDeep
DS

(b)

Ring Linear Tree
Topology

20
25
30
35
40
45
50
55
60

R
es

ou
rc

e
U

til
iz

at
io

n
(%

)

Optimal (ILP)
DiRTS
SPF_early
DRLS+LD
ALAP
TTDeep
DS

(c)

Fig. 14. Performance of algorithms in different topologies. (a) Execution time. The inference time of ILP exceeds DiRTS by 200×. (b)
Scheduling success rate. DiRTS remains the highest among time-saving algorithms. (c) Resource utilization.

Table 3. Scheduling success rate comparison of RA+TA, SPF+TA, and RA+ASAP.

Node DiRTS(RA+TA) (%) SPF+TA (%) RA+ASAP (%)

24 80.00 55.00 62.50
28 84.85 60.61 69.70
32 70.59 55.89 50.00
36 79.41 55.88 61.76
40 80.56 58.33 63.89

TTDeep are 5.09%, 5.28%, 3.72%, 9.68% and 5.17%. The reason for the resource utilization increases with the flow number
is that the scheduled flows increase while the total network scale and resources remain constant.

7.2.3 Performance in Different Topologies.

Setup:We set the network topology as Ring, Linear, and Tree respectively to test the robustness of DiRTS. We fix the
node number and flow number at 28 and 200, respectively.
Results: Fig. 14a shows the execution time of algorithms in different topologies. The execution time of ILP exceeds 80s
in all topologies while that of DiRTS still remains below 1s. In Fig. 14b, the scheduling success rate of DiRTS is 27.14%,
22.06%, and 30.30% higher than that of DRLS+LD in Ring, Linear, and Tree topology, respectively. It demonstrates that
the proposed DiRTS shows great generalization because of complete training data and the adoption of constraints-based
curriculum learning. As Fig. 14c shows, the resource utilization of DiRTS remains the highest among all the time-saving
algorithms. The average increases of DiRTS compared to SPF_early, DRLS+LD, DS, ALAP, and TTDeep are 7.11%, 9.41%,
3.84%, 12.30% and 8.44%. The resource utilization increase is contributed from the increase of successfully scheduled
flows, which occupies more idle resources.

7.2.4 Effectiveness of Route Agent and Time Agent.

Setup: To test the effectiveness of Route Agent (RA) and Time Agent (TA) respectively, we compare the scheduling
success rate of DiRTS (RA+TA) to ShorestPathFirst+TA (SPF+TA) and RA+AsSoonAsPossible (RA+ASAP). We choose
the flow number from 100-300 randomly and set the network scale to 24-40 nodes.
Results: The performance of DiRTS, SPF+TA, and RA+ASAP are shown in Table 3. Averagely, the scheduling success
rate of DiRTS exceeds SPF+TA by 21.94% because the route agent learns to avoid congestion by incorporating the
number of scheduled flows in the link feature while SPF lacks the ability to recognize link congestion dynamically. DiRTS
outperforms RA+ASAP by 17.51% on average. The reason is that the time agent of DiRTS learns the generic scheduling

xx M. Guo, S. He and C. Gu, et al.

Ring Linear Tree
Topology

125

150

175

200

225

250

275

300

Tr
ai

ni
ng

 T
im

e
(s

)

Raspberry
Server

(a)

Ring Linear Tree
Topology

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55

In
fe

rr
in

g
Ti

m
e

(s
)

Raspberry
Server

(b)

Fig. 15. (a) The training time comparison and (b) the inferring time comparison of DiRTS on Raspberry Pi and a server. In (a), the
three bars below 150s are all tested on Server. In (b), the three bars above 0.45s are all tested on Raspberry Pi.

12 16 20 24 28 32 36 40
Network Scale

0

5000

10000

15000

In
fo

rm
at

io
n

Tr
an

sm
is

si
on

 C

os
t (

B
yt

e)

28 32 36
25
30
35
40

DiRTS
Centralized

Fig. 16. The information transmission cost
of DiRTS and the centralized method in the
scheduling process.

0 500 1000 1500 2000
episode

600

400

200

0

200

R
ew

ar
d

w/o Curri
w/ Curri 1
w/ Curri 1&2

Fig. 17. Training performance comparison of
time agents with/without curriculum design.

rules and the current network state instead of following the solid ASAP policies, leading to great generalization and
scalability in different network scales.

7.2.5 Training and Running Overheads of Agents.

Setup: We train the agents in Raspberry Pi (4 model B) and servers to compare their training and execution costs. Both
executions are conducted on CPUs because the majority of field devices are configured with CPUs but no GPU due to
financial constraints. The training time is spent for 200 episodes. The numbers of flows and nodes are set to 200 and 28,
respectively.
Results: The training and execution costs of agents in Raspberry Pi (Pi) and the server are shown in Fig. 15a. The
training time on Pi is on average 2.10 times longer than that on the server due to the limited computational resources of
Pi. The training time of Pi is within 300s, which is acceptable for the training process because it is a one-time effort.
As for the execution cost shown in Fig. 15b. The total inference time on Pi is below 0.6s, which demonstrates the
applicability of DiRTS on resource-constrained industry-level devices.

7.2.6 Transmission Cost Comparison.

Setup: To prove the ability of DiRTS to save information transmission cost, we compare the transmission cost of DiRTS
and the centralized method (Centralized). The network scale is set to 12-40 switches of linear topology. The average

Towards Distributed Flow Scheduling in IEEE 802.1Qbv Time-Sensitive Networks xxi

Table 4. Algorithm Comparison. Extra GCL configuration requires transmitting GCLs from CNC to devices. Uploading resource
information means transmitting link and queue resource information from devices to CNC.

Algorithm
Time Efficiency Functionality Deployability

Execution
Time (s)

Success
Rate (%)

Route
Planning

Time
Planning

Avoid Heuristic
Expertise

Avoid Extra GCL
Configuration

Avoid Uploading
Resource Information

SPF_early 2.44 54.33 ✕ ✓ ✕ ✕ ✕

DRLS+LD 0.03 60.30 ✓ ✓ ✕ ✕ ✕

DS 0.13 59.78 ✓ ✓ ✕ ✕ ✕

TTDeep 3.47 58.85 ✓ ✓ ✓ ✕ ✕

ALAP 0.01 32.71 ✕ ✓ ✕ ✕ ✕

ILP 86.61 100 ✕ ✓ ✓ ✕ ✕

DiRTS (Ours) 0.27 86.80 ✓ ✓ ✓ ✓ ✓

route length of flows is set to half of the network size. For example, the average route length of flows is 10 in a 20-switch
network.
Results: The transmission costs of DiRTS and the centralized method are shown in Fig. 16. At the network scale 40,
the centralized method incurs 410× the cost of information transmission compared to DiRTS, restricting its scalability.
This is due to the global information requirement and per-device GCL configuration of the centralized scheme, which
triggers massive communications between CNC and devices before flow admission. In contrast, DiRTS is free of GCL
transmission and network resource information uploading thanks to the local computing and configuration capabilities
of devices. Meanwhile, each device requires only the local resource information within one link, resulting in a total
transmission distance equivalent to the length of the flow route irrespective of the network scale.

7.2.7 Effect of Training Curriculums for Time Agents.

Setup:We display the comparison of time agents with/without curriculum adoption. We train the agents in the 20-node
ring topology and the flow number is set as 100.
Results: As shown in Fig. 17, Agent1 taking no curriculum is unstable and its model keeps fluctuating. Agent 2 only
taking curriculum 1 converges to local optimum in episode 1094 and the fluctuation intensity declines compared to
Agent1. Agent 3 taking Curriculum 1 and 2 converges in episode 22 and the average reward exceeds Agent 2 by 71.01%.
It demonstrates the effectiveness of training curriculum customization in a constraints complexity-increasing manner.

To summarize, the comparison of algorithms is as Table 4. Different from other DRL-based methods, the route agent
of DiRTS only requires fixed spatial knowledge in topology connection of network nodes, rather than the time-varying
information of network resources. Thus the state modeling of the route agent excludes the knowledge of network
resources, which reduces network information uploading cost as Fig. 16 shows. By transmitting and utilizing the network
resource information locally, it enables the distributed implementation of the time planning tasks and decouples the
route planning and time planning tasks.

8 VALIDATION ON SIMULATOR AND TESTBED

Validation on Network Simulator: In order to evaluate the feasibility and correctness of DiRTS, we use the network
simulator ns.py[19] to verify the schedule calculated by DiRTS. We simulate the schedule generated by DiRTS in ring
and tree topologies, which are shown in Fig. 18a and Fig. 18c, respectively. In each network topology, 50 flows are
tested.

xxii M. Guo, S. He and C. Gu, et al.

SW0
H2

H3

H0 H1

H4

H5SW1 SW2

SW3 SW4

SW5 SW6

H8H6

H7 H9

H10 H11 H13H12

(a)

0 5 10 15 20 25 30 35 40 45 49
Flow id

30
40
50
60
70
80
90

100

D
el

ay
 (

s)

Compute
NetSim

(b)

SW0

SW1 SW2
H2

H3

H0 H1

H4

H5

SW3 SW4 SW6SW5H6

H7
H8 H9 H10 H11

H12

H13

(c)

0 5 10 15 20 25 30 35 40 45 49
Flow id

30
40
50
60
70
80
90

100

D
el

ay
 (

s)

Compute
NetSim

(d)

Fig. 18. The simulation topology of (a) ring and (c) tree. 𝐻0 − 𝐻13 are the hosts, i.e., end devices. The delay of successfully scheduled
50 flows generated in algorithm computation and simulation of (b) ring and (d) tree topology. The flows are sorted by their delays.

The simulation results in ring and tree topology are shown in Fig. 18b and Fig. 18d, respectively. The simulation
delays of flows are less than the computation delays because the computation delay is the integer multiples of time slot
which is the upper bound of the delay and guarantees the reachability of flows in the worst case. Since the network
simulation is more ideal than realistic scenario, the simulation delay is below the computation worst-case delay, which
meets the deadline constraints of all the flows and is in line with our expectations. The simulation results show that all
flows arrived at destinations on time within their deadlines, demonstrating the feasibility of DiRTS.
Validation on Testbed: The experiment setup is shown in Fig. 19a. The network is composed of 4 end devices (hosts)
and 2 switches. The Spirent SPT-N4U Compact Chassis serves as the hosts, which supports TSN standards and can
generate user-defined flows. Meanwhile, It can provide statistics for the flows. The version of switches is Moxa TSN-
G5004. We randomly choose 10 flows and the schedule is calculated by DiRTS, which is then translated to the GCLs and
configured in switches. These flows are then generated and monitored by the Spirent SPT-N4U Compact Chassis.

The experimental results are shown in Fig. 19b. The computation results provide the worst-case delays of all the
flows, which exceed the simulation and experimental delays. However, the experimental delays are not so ideal as the
simulation since the flows would go through ingress filtering and link propagation delay in real scenarios, causing
longer delays compared to the simulation. As a result, the delays in experimental scenarios lie between the computation
results and the simulation results, which accords with theoretical analysis and demonstrates the flows in realistic
scenarios all meet their deadlines. This experiment shows that the schedule computed by DiRTS is applicable to TSN
devices.

9 DISCUSSION

GCL Coordination and Admission Control: If the scheduling of flow 𝑓 fails on a device, it drops the frame and
notifies the devices on the previous hops with a backtracking flow 𝑓𝑏 . 𝑓𝑏 has a lower priority to ensure existing TSN

Towards Distributed Flow Scheduling in IEEE 802.1Qbv Time-Sensitive Networks xxiii

Switch1

Switch0

host0
host2host1
host3

(a)

0 1 2 3 4 5 6 7 8 9
Flow id

10

20

30

40

50

60

D
el

ay
 (

s)

Compute
Experiment
NetSim

(b)

Fig. 19. (a) The experimental setup. (b) The delay of successfully scheduled flows of computation, simulation, and experiment. The
flows are sorted by their delays.

flows are not delayed. Upon receiving 𝑓𝑏 , previous devices recover the GCL set for 𝑓 , and the source device stops
sending 𝑓 . We conducted Response Time Analysis [20] to analyze the worst-case delay of 𝑓𝑏 , which is assigned Class A
priority and transmitted along 10 hops. The worst-case delay was 968.64us (<1ms). In dynamic scenarios, each flow
incrementally injects into the network. The injection time interval of flows can be easily controlled larger than this for
potential GCL recovery and admission control of unscheduled flows.
Necessity of additional flows for attributes information: As described in Sec 4.2, the scheduling of each distributed
time agent gets flow attributes from the flow itself instead of additional flows carrying attributes information. Though
flow attributes profiling for TSN remains an open issue, according to UA Specification [10], the QoS requirement could
be encoded in the OPC UA Ethernet frame, eliminating the extra cost for additional flows carrying attribute information.
Solution to link/switch failure: As evaluated in Fig. 12 and Fig. 14, DiRTS shows great robustness in different network
topologies and conditions. When link/switch failure occurs, topology information is required to be uploaded in CNC
for the route agent to update the spatial feature in state modeling. The route agent regenerates another feasible route
with the new topology, which allows the time agent to circumvent the problem of link failure. Following that, time
agents exploit the local knowledge on the feasible route for offset generation without additional configuration.
Comparison to equivalent decentralized algorithms: As evaluated in Fig. 12, for all the centralized comparison
methods, only ILP outperforms DiRTS since it takes a global view of the whole network to generate schedules at the
cost of large time consumption. Although other centralized methods collect global knowledge, they use it separately
by solving the scheduling problem hop by hop and utilizing only local knowledge to guide the scheduling at each
hop, which fails to take advantage of the global view and conducts in a decentralized way intrinsically. Thus, the
decentralized version of these methods would maintain the same scheduling performance and inferring time. The
performance of traditional Qcc-based approaches that do not use AI can refer to the scheduling results of SPF_early
and ALAP algorithms.

10 CONCLUSION

In this paper, we present a distributed reinforcement learning framework for flow scheduling in IEEE 802.1Qbv time-
sensitive networks. Specifically, we propose a multi-agent DRL scheduling method by designing DRL-based route and
time agents to perform route and time planning tasks. We find the inherent locality property of time scheduling tasks in
TSN and distribute time planning tasks to field devices, enabling the time agent to explore the network locally. Further,

xxiv M. Guo, S. He and C. Gu, et al.

we propose a general model training framework to promote the convergence of distributed agents. We also develop a
TSN dataset generation tool to ease the evaluation efforts on TSN scheduling research.

The experimental results show that the scheduling success rate with the proposed method is on average 20.31%
higher than with the state-of-the-art DRLS, demonstrating its effectiveness. Moreover, it saves the transmission cost by
410× compared with the centralized method, showing great scalability. We successfully implement the designed agents
in Raspberry Pi to validate the deployability of the proposed method in resource-constrained industrial devices. At last,
simulations and experimental validations on the TSN testbed demonstrate the applicability of the proposed method.
For future work, we plan to introduce OPC UA into the current DRL framework to provide a cross-level configuration
solution in the OPC UA over TSN architecture.

ACKNOWLEDGMENTS

Thank the editors and reviewers for the valuable comments. This work is supported by the National Science Foundation
of China (NSFC) under Grant No. (62302439, U23A20296), and in part by the Fundamental Research Funds for the
Central Universities (226-2024-00004). Chaojie Gu is the corresponding author.

REFERENCES
[1] Ayman A Atallah, Ghaith Bany Hamad, and Otmane Ait Mohamed. 2019. Routing and scheduling of time-triggered traffic in time-sensitive networks.

IEEE Transactions on Industrial Informatics 16, 7 (2019), 4525–4534.
[2] Zongrong Cheng, Dong Yang, Weiting Zhang, Jie Ren, Hongchao Wang, and Hongke Zhang. 2022. DeepCQF: Making CQF Scheduling More

Intelligent and Practicable. In ICC 2022 - IEEE International Conference on Communications. 1–6. https://doi.org/10.1109/ICC45855.2022.9882280
[3] Hao Ran Chi, Maria de Fátima Domingues, Konstantin. I. Kostromitin, Ahmad Almogren, and Ayman Radwan. 2021. Spatiotemporal D2D Small

Cell Allocation and On-Demand Deployment for Microgrids. IEEE Access 9 (2021), 116830–116844. https://doi.org/10.1109/ACCESS.2021.3105750
[4] Sandeep Chinchali, Marco Pavone, and Sachin Katti. [n. d.]. Cellular Network Traffic Scheduling using Deep Reinforcement Learning. ([n. d.]).
[5] Silviu S Craciunas and Ramon Serna Oliver. 2016. Combined task-and network-level scheduling for distributed time-triggered systems. Real-Time

Systems 52 (2016), 161–200.
[6] Silviu S Craciunas, Ramon Serna Oliver, Martin Chmelík, and Wilfried Steiner. 2016. Scheduling real-time communication in IEEE 802.1 Qbv time

sensitive networks. In Proceedings of the 24th International Conference on Real-Time Networks and Systems. 183–192.
[7] Frank Dürr and Naresh Ganesh Nayak. 2016. No-wait packet scheduling for IEEE time-sensitive networks (TSN). In Proceedings of the 24th

International Conference on Real-Time Networks and Systems. 203–212.
[8] Jonathan Falk, Frank Dürr, and Kurt Rothermel. 2018. Exploring practical limitations of joint routing and scheduling for TSN with ILP. In 2018 IEEE

24th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA). IEEE, 136–146.
[9] Bernard Fong, A. C. M. Fong, and Kim-Fung Tsang. 2021. Capacity and Link Budget Management for Low-Altitude Telemedicine Drone Network

Design and Implementation. IEEE Communications Standards Magazine 5, 4 (2021), 74–78. https://doi.org/10.1109/MCOMSTD.0001.2100010
[10] OPC Foundation. 2023. OPC UA Specification Part 14. https://reference.opcfoundation.org/Core/Part14/v105/docs/7.3.3.
[11] Voica Gavriluţ and Paul Pop. 2018. Scheduling in time sensitive networks (TSN) for mixed-criticality industrial applications. In 2018 14th IEEE

International Workshop on Factory Communication Systems (WFCS). IEEE, 1–4.
[12] OSPF Working Group. 2008. Open Shortest Path First. https://en.wikipedia.org/wiki/Open_Shortest_Path_First.
[13] TSN Group. 2015. IEEE 802.1Qcc Standard. https://www.ieee802.org/1/files/public/docs2015/cc-cummings-topology-discovery-v1.pdf
[14] TSN Group. 2016. IEEE 802.1Qbv Standard. https://www.ieee802.org/1/pages/802.1bv.html
[15] Xiaowu He, Xiangwen Zhuge, Fan Dang, Wang Xu, and Zheng Yang. 2023. Deep-Scheduler: Enabling Flow-Aware Scheduling in Time-Sensitive

Networking. In IEEE INFOCOM.
[16] David Hellmanns, Lucas Haug, Moritz Hildebrand, Frank Dürr, Stephan Kehrer, and René Hummen. 2021. How to optimize joint routing and

scheduling models for TSN using integer linear programming. In 29th International Conference on Real-Time Networks and Systems. 100–111.
[17] Huang Huang and Jingjing Li. 2020. Distributed Energy-Aware Reliable Routing and TDMA Link Scheduling in Wireless Sensor Networks. In 2020

29th International Conference on Computer Communications and Networks (ICCCN). 1–10. https://doi.org/10.1109/ICCCN49398.2020.9209621
[18] Hongyu Jia, Yu Jiang, Chunmeng Zhong, Hai Wan, and Xibin Zhao. 2021. TTDeep: Time-Triggered Scheduling for Real-Time Ethernet via Deep

Reinforcement Learning. In 2021 IEEE Global Communications Conference (GLOBECOM). 1–6. https://doi.org/10.1109/GLOBECOM46510.2021.9685850
[19] Baochun Li, Li Chen, and Xi Peng. 2022. ns.py. https://github.com/TL-System/ns.py.
[20] Yuhan Lin, Xi Jin, Tianyu Zhang, Meiling Han, Nan Guan, and Qingxu Deng. 2021. Queue assignment for fixed-priority real-time flows in

time-sensitive networks: Hardness and algorithm. Journal of Systems Architecture 116 (2021), 102141. https://doi.org/10.1016/j.sysarc.2021.102141

https://doi.org/10.1109/ICC45855.2022.9882280
https://doi.org/10.1109/ACCESS.2021.3105750
https://doi.org/10.1109/MCOMSTD.0001.2100010
https://reference.opcfoundation.org/Core/Part14/v105/docs/7.3.3
https://en.wikipedia.org/wiki/Open_Shortest_Path_First
https://www.ieee802.org/1/files/public/docs2015/cc-cummings-topology-discovery-v1.pdf
https://www.ieee802.org/1/pages/802.1bv.html
https://doi.org/10.1109/ICCCN49398.2020.9209621
https://doi.org/10.1109/GLOBECOM46510.2021.9685850
https://github.com/TL-System/ns.py
https://doi.org/10.1016/j.sysarc.2021.102141

Towards Distributed Flow Scheduling in IEEE 802.1Qbv Time-Sensitive Networks xxv

[21] Lucia Lo Bello and Wilfried Steiner. 2019. A Perspective on IEEE Time-Sensitive Networking for Industrial Communication and Automation
Systems. Proc. IEEE 107, 6 (2019), 1094–1120. https://doi.org/10.1109/JPROC.2019.2905334

[22] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng, and Mohammad Alizadeh. 2019. Learning scheduling algorithms for
data processing clusters. In Proceedings of the ACM special interest group on data communication. 270–288.

[23] John L. Messenger. 2018. Time-Sensitive Networking: An Introduction. IEEE Communications Standards Magazine 2, 2 (2018), 29–33. https:
//doi.org/10.1109/MCOMSTD.2018.1700047

[24] Sanaz Mohammadi, Didier Colle, and Wouter Tavernier. 2022. Latency-aware Topology Discovery in SDN-based Time-Sensitive Networks. In 2022
IEEE 8th International Conference on Network Softwarization (NetSoft). 145–150. https://doi.org/10.1109/NetSoft54395.2022.9844085

[25] Ramon Serna Oliver, Silviu S Craciunas, and Wilfried Steiner. 2018. IEEE 802.1 Qbv gate control list synthesis using array theory encoding. In 2018
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE, 13–24.

[26] Paul Pop, Michael Lander Raagaard, Marina Gutierrez, and Wilfried Steiner. 2018. Enabling fog computing for industrial automation through
time-sensitive networking (TSN). IEEE Communications Standards Magazine 2, 2 (2018), 55–61.

[27] Francisco Pozo, Guillermo Rodriguez-Navas, Hans Hansson, andWilfried Steiner. 2015. SMT-based synthesis of TTEthernet schedules: A performance
study. In 10th IEEE International Symposium on Industrial Embedded Systems (SIES). 1–4. https://doi.org/10.1109/SIES.2015.7185055

[28] Francisco Pozo, Wilfried Steiner, Guillermo Rodriguez-Navas, and Hans Hansson. 2015. A decomposition approach for SMT-based schedule
synthesis for time-triggered networks. In 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA). 1–8. https://doi.org/10.
1109/ETFA.2015.7301436

[29] Wei Quan, Jinli Yan, Xuyan Jiang, and Zhigang Sun. 2020. On-line Traffic Scheduling optimization in IEEE 802.1Qch based Time-Sensitive Networks.
In 2020 IEEE 22nd International Conference on High Performance Computing and Communications; IEEE 18th International Conference on Smart
City; IEEE 6th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). 369–376. https://doi.org/10.1109/HPCC-SmartCity-
DSS50907.2020.00045

[30] Michael Lander Raagaard and Paul Pop. 2018. Optimization algorithms for the scheduling of IEEE 802.1 Time-Sensitive Networking (TSN).
[31] Mauricio GC Resende and Celso C Ribeiro. 2014. GRASP: Greedy randomized adaptive search procedures. Search methodologies: introductory

tutorials in optimization and decision support techniques (2014), 287–312.
[32] Eike Schweissguth, Peter Danielis, Dirk Timmermann, Helge Parzyjegla, and Gero Mühl. 2017. ILP-based joint routing and scheduling for

time-triggered networks. In Proceedings of the 25th International Conference on Real-Time Networks and Systems. 8–17.
[33] Bassem Sellami, Akram Hakiri, Sadok Ben Yahia, and Pascal Berthou. 2022. Energy-aware task scheduling and offloading using deep reinforcement

learning in SDN-enabled IoT network. Computer Networks 210 (2022), 108957.
[34] Giorgio Stampa, Marta Arias, David Sánchez-Charles, Victor Muntés-Mulero, and Albert Cabellos. 2017. A deep-reinforcement learning approach

for software-defined networking routing optimization. arXiv preprint arXiv:1709.07080 (2017).
[35] Ammad Ali Syed, Serkan Ayaz, Tim Leinmüller, and Madhu Chandra. 2021. Dynamic Scheduling and Routing for TSN based In-vehicle Networks. In

2021 IEEE International Conference on Communications Workshops (ICC Workshops). 1–6. https://doi.org/10.1109/ICCWorkshops50388.2021.9473810
[36] Yujie Tang, Nan Cheng, Wen Wu, Miao Wang, Yanpeng Dai, and Xuemin Shen. 2019. Delay-Minimization Routing for Heterogeneous VANETs

With Machine Learning Based Mobility Prediction. IEEE Transactions on Vehicular Technology 68, 4 (2019), 3967–3979. https://doi.org/10.1109/TVT.
2019.2899627

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2023. Attention Is
All You Need. arXiv:1706.03762 [cs.CL]

[38] Stefano Vitturi, Claudio Zunino, and Thilo Sauter. 2019. Industrial Communication Systems and Their Future Challenges: Next-Generation Ethernet,
IIoT, and 5G. Proc. IEEE 107, 6 (2019), 944–961. https://doi.org/10.1109/JPROC.2019.2913443

[39] Marek Vlk, Zdeněk Hanzálek, Kateřina Brejchová, Siyu Tang, Sushmit Bhattacharjee, and Songwei Fu. 2020. Enhancing schedulability and
throughput of time-triggered traffic in IEEE 802.1 Qbv time-sensitive networks. IEEE Transactions on Communications 68, 11 (2020), 7023–7038.

[40] Chuanyu Xue, Tianyu Zhang, Yuanbin Zhou, Mark Nixon, Andrew Loveless, and Song Han. 2024. Real-Time Scheduling for 802.1Qbv Time-Sensitive
Networking (TSN): A Systematic Review and Experimental Study. arXiv:2305.16772 [cs.NI]

[41] Jinli Yan, Wei Quan, Xuyan Jiang, and Zhigang Sun. 2020. Injection time planning: Making CQF practical in time-sensitive networking. In IEEE
INFOCOM 2020-IEEE Conference on Computer Communications. IEEE, 616–625.

[42] Chunmeng Zhong, Hongyu Jia, Hai Wan, and Xibin Zhao. 2021. DRLS: A Deep Reinforcement Learning Based Scheduler for Time-Triggered Ethernet.
In 2021 International Conference on Computer Communications and Networks (ICCCN). 1–11. https://doi.org/10.1109/ICCCN52240.2021.9522239

https://doi.org/10.1109/JPROC.2019.2905334
https://doi.org/10.1109/MCOMSTD.2018.1700047
https://doi.org/10.1109/MCOMSTD.2018.1700047
https://doi.org/10.1109/NetSoft54395.2022.9844085
https://doi.org/10.1109/SIES.2015.7185055
https://doi.org/10.1109/ETFA.2015.7301436
https://doi.org/10.1109/ETFA.2015.7301436
https://doi.org/10.1109/HPCC-SmartCity-DSS50907.2020.00045
https://doi.org/10.1109/HPCC-SmartCity-DSS50907.2020.00045
https://doi.org/10.1109/ICCWorkshops50388.2021.9473810
https://doi.org/10.1109/TVT.2019.2899627
https://doi.org/10.1109/TVT.2019.2899627
https://arxiv.org/abs/1706.03762
https://doi.org/10.1109/JPROC.2019.2913443
https://arxiv.org/abs/2305.16772
https://doi.org/10.1109/ICCCN52240.2021.9522239

xxvi M. Guo, S. He and C. Gu, et al.

A APPENDICES

A.1 Ablation Experiments

A.1.1 Impact of Training Pattern:

Setup: In the training process of each episode, the data sampling method will impact the training performance
and convergence speed. The difference between 2 training data sampling methods, i.e., 1. Sampling trajectories of
unsuccessfully routed flows and 2. Random sampling is compared by route agent. We train the agent in the 20-node
ring-topology network and the flow number is set as 16.
Results: Fig. 20 shows the comparison. Method 1 converges in the 51st episode while Method 2 is still not converged in
the 220th episode and the ultimate routing success rate of Method 1 exceeds Method 2 by 75%. The reason is that the
feedback of unsuccessfully routed flows contains the knowledge that the agent lacks. Thus, sampling the trajectories of
these flows to update the agent parameter helps the agent learn immediately. Instead, Method 2 randomly samples
trajectories in each episode, which share the same distribution in all episodes. It leads the agent to learn generally the
same knowledge as the training progresses and tends to converge to local optimums.

0 50 100 150 200
episode

400

200

0

200

400

600

Lo
ss

Route Agent Training

Sample Unseccessful Trajectory
Sample Random Trajectory

(a)

0 50 100 150 200
episode

400

300

200

100

0

100

200

R
ew

ar
d

Route Agent Training

Sample Unseccessful Trajectory
Sample Random Trajectory

(b)

Fig. 20. The comparison of data sampling method in training. (a) The loss of route agent training exploiting two data sampling
methods. (b) The reward of route agent training exploiting two data sampling methods.

A.1.2 Effect of Curriculum Learning:

Setup: During the training of the time agent, we leverage curriculum learning to improve generalization and speed up
convergence. We display its performance and the comparison to the case without curriculum learning. We train the
agent in the 20-node ring-topology network and the flow number is set as 100.
Results: Fig. 21 displays the performance comparison of agents with and without curriculum learning. As shown in
Fig. 21b, Agent1 taking no curriculum is unstable and its performance keeps fluctuating. Agent 2 only taking curriculum
1 converges to local optimum in episode 1094 and the fluctuation intensity declines compared to Agent1. Agent 3
taking Curriculum 1 and 2 converges in episode 22 and the average reward it gained exceeds Agent 2 by 71.01%. It
demonstrates that designing complete curriculums for agents can improve generalization and speed up convergence
when training data is fed in a complexity-increasing manner.

A.1.3 Effect of Positional Encoding:

Setup: In the training process of the time agent, the positional encoding will contribute to the convergence speed and
model stability. We verify this by comparing the training of two time agents, i.e., one utilizing the positional encoding
while the other excludes it. The verification setting is 5-node ring topology and the flow number is 11.

Towards Distributed Flow Scheduling in IEEE 802.1Qbv Time-Sensitive Networks xxvii

0 250 500 750 1000 1250 1500 1750 2000
episode

40

20

0

20

40

60

Lo
ss

Time Agent Training

Curriculum 1
Curriculum 2

(a)

0 250 500 750 1000 1250 1500 1750 2000
episode

600

500

400

300

200

100

0

100

R
ew

ar
d

Time Agent Test

Agent taking no Curri
Agent taking Curri 1
Agent takeing Curri 1&2

(b)

Fig. 21. The performance of time agent adopting curriculum learning. (a) The training process of the time agent taking Curriculum 1
and 2. The Agent converges in both curriculums. (b) The test of agents taking no curriculum, only curriculum 1, and both curriculum
1 and 2 respectively.

0 250 500 750 1000 1250 1500 1750 2000
episode

30

20

10

0

10

20

30

Lo
ss

Time Agent Training

w/ Positional Encoding
w/o Positional Encoding

(a)

0 250 500 750 1000 1250 1500 1750 2000
episode

200

100

0

100

200

R
ew

ar
d

Time Agent Train

w/ Positional Encoding
w/o Positional Encoding

(b)

Fig. 22. The (a) loss comparison and (b) reward comparison of training between time agents with and without positional encoding.

Results: Fig. 22 displays the effect of positional encoding. It is the comparison between the training loss and reward
of 2 time agents, one with positional encoding while the other excludes it. As Fig. 22a shows, the agent without
positional encoding converges to local optimal. In contrast, the agent with positional encoding converges to a smaller
loss, indicating its capacity of learning from the environment to generate effective policy. Fig. 22b shows that the agent
with positional encoding acquires a higher reward than the one without encoding. Meanwhile, the agent with encoding
converges in the 720th episode, while the one without it is still unstable in the 1983rd episode. It suggests that positional
encoding contributes to better performance and model stability.

A.1.4 Selection of different model parameters:

Setup: In the training process of the route agent and time agent, the parameters will impact the training performance and
convergence speed. We conduct ablation experiments on these parameters including learning rate, reward parameters
of route agent 𝜁 and 𝜂, and reward parameter of time agent 𝜉 . We train bot route agent and time agent in the 20-node
ring-topology network and the flow number is set as 16.
Results: Fig. 23 shows the comparison of training loss convergence of route agent and time agent with different
learning rates. For the route agent with a learning rate of 0.002, its training loss is the minimum compared with the
training loss with other learning rates, indicating the highest learning capacity at a learning rate of 0.002. For the time
agent with a learning rate of 0.002, though the ultimate training loss is the same as the cases with learning rates of

xxviii M. Guo, S. He and C. Gu, et al.

0 100 200 300 400 500
episode

−500

−400

−300

−200

−100

0
Lo

ss

lr=5e-4
lr=e-3
lr=2e-3
lr=4e-3

(a) The training loss of the route agent with
different learning rates.

0 250 500 750 1000 1250 1500 1750 2000
episode

−30

−20

−10

0

10

20

30

Lo
ss

lr=e-3
lr=4e-3
lr=5e-4
lr=2e-3

(b) The training loss of the time agent with
different learning rates.

Fig. 23. Ablation experiments of learning rate with (a) route agent and (b) time agent.

0 100 200 300 400 500
episode

−1000

−800

−600

−400

−200

0

200

400

600

Lo
ss

ζ=20
ζ=10

ζ=1
ζ=0.1

Fig. 24. The training loss of the route agent
with different 𝜁 values.

0 100 200 300 400 500
episode

−600

−400

−200

0

200

400
Lo

ss
η=-0.01
η=-0.1
η=-1
η=-10

Fig. 25. The training loss of the route agent
with different 𝜂 values.

0 1000 2000
episode

−50

0

50

100

150

200

250

Lo
ss

Convergence Process

ξ=-200
ξ=-100
ξ=-40
ξ=-4

-200 -100 -40 -4
ξ

70

75

80

85

90

95

100

Su
cc

es
s R

at
e

(%
)

Training Effect

Fig. 26. The training loss and scheduling suc-
cess rate of the time agent with different 𝜉
values.

0.004 and 0.0005, the convergence speed with a learning rate of 0.002 is the fastest. The time agent with a learning rate
of 0.002 is converged in the 713th episode, but with a learning rate of 0.004, it is converged in the 826th episode.

Fig. 24 and Fig. 25 show the comparison of training loss of route agent with different 𝜁 and 𝜂 values respectively.
For all the tested 𝜁 values, only the route agent with 𝜁=10 is converged. Note that the loss of route agent with 𝜁 =20
reaches the lowest because the value of 𝜁 increases the reward and then reduces the loss values, but the model does not
converge. Thus it reflects no model generalization improvement. As a result, 10 is the most suitable value for 𝜁 . For
all the tested 𝜂 values, the route agent with 𝜂=-0.1 shows the fastest convergence speed, and it converges at the 32nd
episode, while the route agent with 𝜂=-10 converges at the 97th episode. Thus -0.1 is the most suitable value for 𝜂.

Fig. 26 shows the comparison of training loss convergence scheduling performance of time agent with different 𝜉
values. The time agents all converge to the same value with 𝜉 being -4 and -40. But the performance of the model with
𝜉=-40 reaches the highest scheduling success rate 100% while the performance of the model with 𝜉=-4 is 90.9%. Thus
-40 is the most suitable value for 𝜉 .
A.2 Scheduling Constraints

Frame Constraint: The offset of any frame has to be greater than or equal to 0. Additionally, the entire transmission
window (offset plus frame duration) has to fit within the frame period. The constraint is as follows:

∀𝑓 𝑖∈𝐹, ∀[𝑣𝑎, 𝑣𝑏]∈𝑓𝑖 .𝑅𝑡, ∀𝑓
[𝑣𝑎,𝑣𝑏]
𝑖,𝑚

∈ 𝐹 [𝑣𝑎,𝑣𝑏]
𝑖

:

(𝑓 [𝑣𝑎,𝑣𝑏]
𝑖,𝑚

.𝜙 ≥ 0) ∧ (𝑓 [𝑣𝑎,𝑣𝑏]
𝑖,𝑚

.𝜙 ≤ 𝑓 [𝑣𝑎,𝑣𝑏]
𝑖,𝑚

.𝑝𝑒𝑟𝑖𝑜𝑑 − 𝑓 [𝑣𝑎,𝑣𝑏]
𝑖,𝑚

.𝐿), (12)

Towards Distributed Flow Scheduling in IEEE 802.1Qbv Time-Sensitive Networks xxix

where 𝐹 [𝑣𝑎,𝑣𝑏]
𝑖

refers to the set of frames of flow 𝑓𝑖 on link [𝑣𝑎, 𝑣𝑏], and 𝑓𝑖 .𝑅𝑡 refers to the route of flow 𝑓𝑖 .
Flow Transmission Constraint: The propagation of frames of a flow must follow the sequential order along the
routed path of the flow.

∀𝑓𝑖 ∈ 𝐹, ∀[𝑣𝑎, 𝑣𝑥], [𝑣𝑥 , 𝑣𝑏] ∈ 𝑓𝑖 .𝑅𝑡,

∀𝑓 [𝑣𝑎,𝑣𝑥]
𝑖, 𝑗

∈ 𝐹 [𝑣𝑎,𝑣𝑥]
𝑖

, ∀𝑓 [𝑣𝑥 ,𝑣𝑏]
𝑖, 𝑗

∈ 𝐹 [𝑣𝑥 ,𝑣𝑏]
𝑖

:

𝑓
[𝑣𝑥 ,𝑣𝑏]
𝑖, 𝑗

.𝜙 ≥ 𝑓 [𝑣𝑎,𝑣𝑥]
𝑖, 𝑗

.𝜙 + 𝑓 [𝑣𝑎,𝑣𝑥]
𝑖, 𝑗

.𝐿 + 𝜎, (13)

where 𝜎 refers to the time synchronization error.
Deadline Constraint: The deadline constraint specifies that the end-to-end latency cannot exceed the deadline.

∀𝑓𝑖 ∈ 𝐹, ∀𝑗 ∈ [0,
𝑇𝑠𝑐ℎ𝑒𝑑

𝑓𝑖 .𝑝𝑒𝑟𝑖𝑜𝑑
− 1]

𝑓
𝐿𝑎𝑠𝑡 (𝑓𝑖 .𝑅𝑡)
𝑖, 𝑗

.𝜙 + 𝑓 𝐿𝑎𝑠𝑡 (𝑓𝑖 .𝑅𝑡)
𝑖, 𝑗

.𝐿 − 𝑓 𝐹𝑖𝑟𝑠𝑡 (𝑓𝑖 .𝑅𝑡)
𝑖, 𝑗

.𝜙 ≤ 𝑓𝑖 .𝑑𝑑𝑙, (14)

where 𝐿𝑎𝑠𝑡 (𝑓𝑖 .𝑅𝑡) and 𝐹𝑖𝑟𝑠𝑡 (𝑓𝑖 .𝑅𝑡) refer to the last link and the first link in the route sequence of flow 𝑓𝑖 , respectively.
Link Constraint: Two frames routed through the same physical link in the network can not overlap in the time domain.
The constraint is as follows:

∀[𝑣𝑎, 𝑣𝑏] ∈ 𝐸, ∀𝐹
[𝑣𝑎,𝑣𝑏]
𝑖

, 𝐹
[𝑣𝑎,𝑣𝑏]
𝑗

, 𝑖 ≠ 𝑗,

∀𝑓 [𝑣𝑎,𝑣𝑏]
𝑖,𝑘

∈ 𝐹 [𝑣𝑎,𝑣𝑏]
𝑖

, ∀𝑓 [𝑣𝑎,𝑣𝑏]
𝑗,𝑙

∈ 𝐹 [𝑣𝑎,𝑣𝑏]
𝑗

,

∀𝛼 ∈ [0, 𝑇𝑠𝑐ℎ𝑒𝑑

𝑓𝑖 .𝑝𝑒𝑟𝑖𝑜𝑑
− 1], ∀𝛽 ∈ [0, 𝑇𝑠𝑐ℎ𝑒𝑑

𝑓𝑗 .𝑝𝑒𝑟𝑖𝑜𝑑
− 1] :

(𝑓 [𝑣𝑎,𝑣𝑏]
𝑖,𝑘

.𝜙 + 𝛼 × 𝑓 [𝑣𝑎,𝑣𝑏]
𝑖,𝑘

.𝑝𝑒𝑟𝑖𝑜𝑑 ≥

𝑓
[𝑣𝑎,𝑣𝑏]
𝑗,𝑙

.𝜙 + 𝛽 × 𝑓 [𝑣𝑎,𝑣𝑏]
𝑗,𝑙

.𝑝𝑒𝑟𝑖𝑜𝑑 + 𝑓 [𝑣𝑎,𝑣𝑏]
𝑗,𝑙

.𝐿)∨

(𝑓 [𝑣𝑎,𝑣𝑏]
𝑗,𝑙

.𝜙 + 𝛽 × 𝑓 [𝑣𝑎,𝑣𝑏]
𝑗,𝑙

.𝑝𝑒𝑟𝑖𝑜𝑑 ≥

𝑓
[𝑣𝑎,𝑣𝑏]
𝑖,𝑘

.𝜙 + 𝛼 × 𝑓 [𝑣𝑎,𝑣𝑏]
𝑖,𝑘

.𝑝𝑒𝑟𝑖𝑜𝑑 + 𝑓 [𝑣𝑎,𝑣𝑏]
𝑖,𝑘

.𝐿) . (15)

Deterministic Queue Constraint: To guarantee the deterministic arrival order, frames of queue-sharing flows must
be scheduled so their arrival times are far apart to avoid interleaving. Thus, the constraint isolates two different frames
such that one frame can be transmitted to a shared queue only after the other frame is dispatched from the queue.

∀[𝑣𝑎, 𝑣𝑏] ∈ 𝐸, ∀𝐹
[𝑣𝑎,𝑣𝑏]
𝑖

, 𝐹
[𝑣𝑎,𝑣𝑏]
𝑗

, 𝑖 ≠ 𝑗,

∀𝑓 [𝑣𝑎,𝑣𝑏]
𝑖,𝑘

∈ 𝐹 [𝑣𝑎,𝑣𝑏]
𝑖

, ∀𝑓 [𝑣𝑎,𝑣𝑏]
𝑗,𝑙

∈ 𝐹 [𝑣𝑎,𝑣𝑏]
𝑗

,

∀𝛼 ∈ [0, 𝑇𝑠𝑐ℎ𝑒𝑑

𝑓𝑖 .𝑝𝑒𝑟𝑖𝑜𝑑
− 1], ∀𝛽 ∈ [0, 𝑇𝑠𝑐ℎ𝑒𝑑

𝑓𝑗 .𝑝𝑒𝑟𝑖𝑜𝑑
− 1] :

(𝑓 [𝑣𝑎,𝑣𝑏]
𝑖,𝑘

.𝜙 + 𝛼 × 𝑓 [𝑣𝑎,𝑣𝑏]
𝑖,𝑘

.𝑝𝑒𝑟𝑖𝑜𝑑 + 𝜎 ≤

𝑓
[𝑣𝑦 ,𝑣𝑎]
𝑗,𝑙

.𝜙 + 𝛽 × 𝑓 [𝑣𝑦 ,𝑣𝑎]
𝑗,𝑙

.𝑝𝑒𝑟𝑖𝑜𝑑)∨

(𝑓 [𝑣𝑎,𝑣𝑏]
𝑗,𝑙

.𝜙 + 𝛽 × 𝑓 [𝑣𝑎,𝑣𝑏]
𝑗,𝑙

.𝑝𝑒𝑟𝑖𝑜𝑑 + 𝜎 ≤

𝑓
[𝑣𝑥 ,𝑣𝑎]
𝑖,𝑘

.𝜙 + 𝛼 × 𝑓 [𝑣𝑥 ,𝑣𝑎]
𝑖,𝑘

.𝑝𝑒𝑟𝑖𝑜𝑑). (16)

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary
	3.1 Switch Model
	3.2 Network and Flow Model
	3.3 Scheduling Problem and Constraints

	4 DiRTS Framework
	4.1 Overview
	4.2 Locality Analysis
	4.3 Distributed Working Pattern

	5 Route Agent
	5.1 State Modeling
	5.2 Action Modeling
	5.3 Model Updating

	6 Time Agent
	6.1 State Modeling
	6.2 Action Modeling
	6.3 Model Updating

	7 Evaluation
	7.1 Experimental Setup
	7.2 Experimental Results

	8 Validation on Simulator and Testbed
	9 Discussion
	10 Conclusion
	Acknowledgments
	References
	A Appendices
	A.1 Ablation Experiments
	A.2 Scheduling Constraints

