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Abstract—5G is a promising technology for improving the
Quality of Service (QoS) in Internet of Vehicles (IoV) appli-
cations, including Vehicular Edge Computing (VEC). However,
5G networks have a limited communication range due to their
radio-frequency properties, which can be a challenge in dynamic
IoV environments. To address this issue, we propose a VEC
architecture based on heterogeneous cellular networks, in which
vehicles can select the appropriate communication network by
classifying tasks according to their maximum tolerable latency.
In order to further enhance the overall performance of the VEC
system, we developed an efficient scheme that optimizes task
offloading decisions and computation resource allocation in the
proposed architecture. We analyze and formulate the optimiza-
tion problem and use the linear relaxation improved branch-
and-bound algorithm to solve it. Through extensive simulations,
we demonstrate that the proposed scheme is superior to other
solutions in computing latency, energy consumption, and failure
rate. Index terms— Vehicular Edge Computing (VEC), task
offloading, computation resource allocation, task classification.

I. INTRODUCTION

With the continuous increase of intelligent vehicles, Ve-
hicular Edge Computing (VEC) is a promising technology
supporting the Internet of Vehicles (IoV) applications in Intel-
ligent Transport Systems (ITS) [1], such as navigation, traffic
management, safety, and in-car entertainment. VEC is a type
of edge computing that involves the utilization of computing
resources and sensors in vehicles to process and analyze
data, perform various tasks, and provide services to users.
By bringing computing resources closer to terminal vehicles,
VEC enables low-latency access to services while fulfilling
the execution requirements of various service types [2]–[4].

Typically, VEC adopts wireless communication due to the
fact that the vehicle environment is highly dynamic. The
existing IoV communication mainly adopts Dedicated Short
Range Communications (DSRC) method, which can realize
vehicle identification, electronic deduction, and establishment
of unattended vehicle channels [5]. As the IoV continues to
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evolve, the shortcomings of DSRC have become increasingly
apparent, such as short transmission distance, signal blockage,
and repeated construction of signal transmitters. Aiming at
the limitations of DSRS, Cellular Vehicle to Everything (C-
V2X) has been introduced to provide support for the complex
services of the existing LTE-V2X and the developing NR-
V2X [6]. Compared to DSRC, LTE-V2X technology is more
advanced except for the latency. As the evolution of LTE, the
fifth generation (5G) communication technology not only has
higher bandwidth, supports a larger number of connections,
but also supports higher mobile speed [7].

However, there are two major network problems if VEC is
completely dependent on 5G services. The first is the avail-
ability of 5G services. In the current stage, 5G infrastructures
have not been widely deployed due to construction costs and
the availability of suitable deployment sites. 5G networks
may not yet have widespread coverage, especially in rural
or remote areas [8]. The second is the communication range
of 5G networks. Compared to 4G networks, 5G networks
have a shorter communication range because they operate at
higher frequencies, which have shorter wavelengths. In other
words, 5G signals can be more easily absorbed or blocked
by obstacles on their propagation path. To this end, in this
paper, we proposed to incorporate 5G base stations (gNBs)
with the widely available 4G base stations (eNBs) to support
VEC communication. In this way, the vehicle can actively
select the communication network to improve its connectivity
with the edge server.

In 5G communications, the Third Generation Partnership
Project (3GPP) standardization proposes two network architec-
tures, standalone (SA) and non-standalone (NSA). SA refers
to the construction of a new 5G network, including new
base stations, backhaul links, and a core network, which does
not depend on the existing 4G network. NSA networking
refers to the deployment of 5G networks using existing 4G
infrastructure. 5G carriers based on the NSA architecture carry
only user data, and their control signaling is still transmitted
over the 4G network [9]. In the early stages of 5G deployment,
5G cells will not be widely covered and there will be 5G
coverage gaps. Operators can seamlessly serve 5G users by
interoperating with existing LTE networks. 5G interoperability
with fully deployed LTE networks not only provides fast,
seamless coverage, but also brings economic benefits to net-
work operators [10]. Therefore, NSA is a more common net-
work architecture today. However, the task offloading problem
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in IoV has been extensively studied in SA networks [11], and
the VEC problem in NSA networks has rarely been considered.
The joint offloading of heterogeneous cellular networks based
on the NSA network architecture proposed in this paper not
only improves the computing efficiency of VEC, but also better
meets the practical offloading scenarios in the current vehicular
networking.

While utilizing the VEC architecture based on the hetero-
geneous cellular network to deal with the aforementioned net-
work problems, task offloading and resource allocation should
also be considered to improve computational efficiency and
reduce energy consumption. Researchers have devoted efforts
to designing various task offloading and resource allocation
approaches. For more efficient utilization of edge resources,
[12] introduced a 5G-enabled EC-IoV system architecture to
improve the efficiency of the current EC-IoV system, and
additionally provided a task offloading calculation method that
is applicable under diverse scenarios. [13] designed an au-
tonomous vehicular edge (AVE) system, which can effectively
manage the idle computational resources of vehicles and lever-
age them to offer computing services in dynamic vehicular
situations. However, existing approaches cannot be directly
applied to the proposed VEC architecture because they do not
consider the heterogeneity in base stations. Thus, we present a
task offloading and resource allocation scheme for VEC based
on heterogeneous cellular networks. In this scheme, tasks are
classified according to their maximum tolerable delay and
the communication range of the base stations. Based on this
classification, the most suitable offloading method is selected.
For the purpose of minimizing global task completion latency
and energy consumption, we propose the use of a branch-
and-bound algorithm to determine whether tasks should be
executed locally or at the edge server. Our proposed scheme
not only lowers the failure rate of task offloading in 5G-
enabled edge computing but also minimizes the overall latency
and energy consumption through weighted summation.

The contributions of this work can be summarized as
follows:

• We consider the maximum tolerance delay of tasks and
propose the VEC architecture based on heterogeneous
cellular networks aimed at minimizing the weighted sum
of total latency and energy consumption.

• We jointly formulate task offloading strategy and resource
allocation as a mixed integer nonlinear programming
(MINLP) problem. To address this issue, first, we intro-
duce the task classification algorithm to determine the
offloading method, and then we use the linear relaxation
improved branch-and-bound algorithm to find the desir-
able solution.

• We simulate realistic vehicle tasks offloading with MAT-
LAB to examine the effectiveness of our proposed scheme
under various key parameters. In comparison with other
offloading schemes, the proposed system exhibits lower
latency, energy consumption, and failure rate, indicating
superior performance.

Paper Organization. Section II reviews related work. Sec-
tion III presents the proposed system model and problem for-

mulation. Section IV proposes the linear relaxation improved
branch-and-bound algorithm to resolve the formulated prob-
lem. Section V presents the evaluation results and Section VI
concludes this paper.

II. RELATED WORK

In recent years, the increased number of vehicle applica-
tions, which require high computation and consume a large
amount of energy, has made VEC a research hotspot [14].
Numerous researchers have made significant contributions
towards reducing the execution delay of tasks [15]–[18], as
well as the energy consumption of task offloading [19]–[21].
Furthermore, several studies [11], [22], [23] have taken into
account both user experience quality and limited resources,
suggesting that leveraging the idle resources of communication
vehicles can effectively address the task load on VEC servers.

Choo et al. [15] proposed an architecture called software-
defined vehicles edge computing (SD-VEC), which allows
the controller to manage both task offloading and resource
allocation among edge servers simultaneously. They formu-
lated a problem related to the selection of an edge server
and allocation of resources with the goal of maximizing the
probability of successfully completing tasks within specified
time constraints. Zhu et al. [16] proposed a novel solution
that considers the limitation of fog capacity, service latency,
and quality loss to optimize resource allocation in Vehicular
Fog Computing (VFC). Qiao et al. [17] designed the task
migration computation offloading (TMCO) algorithm for VEC
considering vehicle mobility and the strict delay deadline. The
TMCO algorithm can dynamically select the appropriate edge
server for offloading according to the moving route of the
vehicles. Zhang et al. [18] proposed a MEC-enabled IoV
architecture that allows both MEC servers and vehicles to
act as offloading nodes, and jointly roadside units to enable
the provision of low-latency offloading services. Additionally,
they presented a task offloading strategy named TO-TCONS,
which considers the selection of offloading nodes and task
classification to minimize overall completion delay. These
studies mainly take into account the high reliability and low
latency of the task but ignore the energy efficiency problem.
In fact, energy consumption is also a crucial factor to consider
in the task offloading process.

Because of the mobility of vehicles, the communication
environment is constantly changing. Jang et al. [19] jointly
optimized the bit allocation and offloading percentage to
reduce the total energy consumption of vehicles under the
delay constraint. Li et al. [20] proposed the JTORAEH al-
gorithm combining MEC and energy harvesting to decrease
overall energy consumption while meeting the task latency
requirement. Lu et al. [21] considered a large-scale MEC
network that included multiple MEC servers and users. The
overall strategy of joint task computing delay and energy
efficiency is proposed to maximize the average user offloading
utility.

However, the above work is mainly to enhance the user
experience quality and cannot solve the problem of limited
resources. Zeng et al. [22] conducted a study on the efficient
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Fig. 1: The dual base station collaborative IoV architecture.

utilization of volunteer vehicle resources to manage the work-
load on VEC servers. Similarly, Peng et al. [23] introduced a
novel paradigm known as parked-vehicle assisted edge com-
puting (PVEC), which leverages idle computational resources
of parked vehicles as a supplement for VEC. Utilizing the
Stackelberg game, this study analyzes the mutual communica-
tion between VEC servers and requesting vehicles to identify
the most effective offloading strategies. In addition to the
availability of vehicle idle resources, gNBs can also provide
task offloading services. Based on the cellular network, Raza
et al. [11] further take into account the fifth-generation new-
radio vehicle-to-everything communication model to enhance
the overall system performance. However, the authors only an-
alyzed resource allocation and did not consider the cooperation
of base stations.

This paper proposes a VEC architecture based on heteroge-
neous cellular networks that differ from prior research works
by offering more computing resources and decreasing the
failure rate of low-latency tasks via base station cooperation.
We jointly optimized task offloading and resource allocation
in order to achieve optimal computational efficiency while
minimizing total completion delays and energy consumption.

In addition to the studies addressing latency, energy con-
sumption, and resource allocation challenges in task offload-
ing, there has been extensive research on the selection of
base stations when multiple base stations across different
regions collaboratively provide wireless communication and
task offloading services for vehicles. These studies can be
broadly summarized into three categories. The first is based on
the signal strength of the base station to select the appropriate
offloading node for the task [24]–[26]. The second is based
on load balancing between base stations to develop a global
task offloading scheme [27]–[29]. The last is based on the
total delay or total energy consumption of task offloading to
improve the user experience quality [30], [31]. However, they
did not consider the situation of collaborative communication
assistance for task offloading using heterogeneous cellular
networks within the same region. Differently, the proposed col-
laborative task offloading of heterogeneous cellular networks
within the same region in this paper can further expand the
application scope and scenarios of vehicle edge computing.

TABLE I: Notations

Symbol Description

N Vehicle set
P bs Position of the eNB-gNB dual base station
P veh
i Position of the vehicle i
gi Distance between vehicle i and base station j
Φi Task Φi

di Size of data to be offloaded
ci Computing resources required for the task Φi

Ti Delay constraint of Φi

µi Task offloading decision
ηi Task offloading node selection
Ri,j Uplink transmission rate
Dl

i Local computing time
El

i Local energy consumption
Dt

i,j Task transmission time
Dc

i,j Edge computing time
Di,j Total edge processing time
Ei,j Vehicle energy consumption when offloading task
Bi,j Uplink channel bandwidth
PT
i Transmission power when vehicle i is busy

P I
i Power consumption when vehicle i is idle
α Path loss exponent
N0 Noise power spectral density
h0 Channel attenuation coefficient

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we will introduce the VEC architecture
based on heterogeneous cellular networks and discuss the
task classification method, followed by the presentation of the
system model. We will then provide a detailed discussion of
the problem description and optimization function. Relevant
symbols used in this section are listed in Tab. I.

A. VEC Architecture

We consider a VEC architecture based on heterogeneous
cellular networks, where the vehicles that travel on the city
road can receive LTE and 5G NR services. The offloading
process of the task can be completed through the cooperation
of eNB and gNB. Since the scenario modeled in this paper is
aimed at dense urban areas, there is no significant difference in
the density of eNBs and gNBs. To better describe the process
of eNB and gNB collaborative task offloading, this paper takes
the example of a dual base station model which is a co-sited
base station with edge computing servers and vehicles [32],
as shown in Fig. 1. In a practical environment, we can divide
multiple eNBs and gNBs on the road into multiple dual base
station models for collaborative task offloading [18]. The
position of the base station is denoted as P bs = (xbs, ybs). Let
N ={1, 2,..., N} denote N vehicles in this system. The position
of vehicle i is indicated by P veh

i = (xveh
i , yvehi ), i = 1, ...N .

B. Task Classification

We make the assumption that there are N vehicles on the
road with each vehicle i responsible for performing a periodic
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computation-intensive task, which is modeled as a ternary
Φi = {ci, di, Ti}, where ci denotes the total number of CPU
cycles necessary to complete the task Φi, di denotes the size
of the input data required to process, Ti denotes the delay
constraint of Φi. We use µ = {µ1, µ2, ..., µn} to represent
the task offloading selection. Note that when µi equals 0, it
means that the task Φi will be executed locally, otherwise, it
indicates that task Φi should be performed at the edge server.
In addition, we also need to determine the offloading node of
task Φi, therefore, we introduce a variable ηi ∈ {0, 1}. If ηi
equals 0, it means that the vehicle i is in the coverage of eNB
when it sends the request, so the task needs to be offloaded to
eNB. Otherwise, the vehicle i will transmit the task to gNB.

Assume that the position where the vehicle sends the request
is xo, and the destination position to receive responses is
denoted as xd. According to the delay constraint and the
coverage of the base station, the offloading modes of tasks
can be further divided into two types.

Fig. 2: Single base station offloading mode.

1) Single base station offloading mode: The first offloading
mode pertains to a scenario where both the original and
destination vehicles are located within the same coverage area
of a gNB or eNB. As illustrated in Fig. 2, there are two
methods for carrying out the offloading task. The first method,
labeled as r1, involves xo and xd being situated within the
same eNB’s coverage zone. In this case, the vehicle offloads
the task to the eNB for execution. After the eNB finishes
executing the task, the result is returned from the eNB to the
vehicle. Similarly, the other way, labeled as r2, is that both the
original and destination vehicles are covered by gNB. In this
case, the vehicle can directly send the task to the gNB, and
the gNB will execute it and return the result. Under the first
offloading mode, the offloading process of these tasks consists
of three parts: task uplink transmission, edge computation, and
downlink transmission.

2) Dual base station offloading mode: Unlike the first
offloading mode, the second mode involves the original and
destination vehicles that are not within the same base station
coverage area, as depicted in Fig. 3. In particular, if the
vehicle sends a task processing request to the eNB, we do
not consider the dual base station offloading mode, because

Fig. 3: Dual base station offloading mode.

the eNB has a larger coverage area and almost covers the
gNB. Specifically, the xo is situated within the gNB’s coverage
area, while the xd is located in an area covered by the eNB.
Therefore, there is a high probability that the vehicle will
not be able to receive processing feedback before driving
away from gNB’s coverage. Based on the dual base station
collaborative architecture, the following method can solve this
problem. First, the vehicle offloads the task to the gNB for
execution, then the gNB transmits the result to the eNB that
can cover the destination vehicle. If the destination vehicle is
located within the overlapping coverage area of multiple eNBs,
then we determine which eNB will serve as the relay node
according to the optimal selection of base stations [25], [33].
Finally, the eNB returns the calculation result to the requesting
vehicle. These tasks require migration between base stations
during the offloading process. In other words, eNB can serve
as a relay node in the process of result transmission [34].

C. System Model

1) Communication model: We take into account the impact
of distance on transmission rate in our offloading scheme. It
is assumed that the base station has coordinate (xbs, ybs) and
the target vehicle i has coordinate (xveh

i , yvehi ). Thus, we can
express the distance between vehicle i and base station j as
follows:

gi =

√(
xveh
i − xbs

)2
+
(
yvehi − ybs

)2
. (1)

In addition, based on Shannon’s theory, the uplink transmis-
sion rate between vehicle i and the base station j is represented
as

Ri,j = Bi,j log2

(
1 +

Pi |h0|2 (gi)−α

N0Bi,j

)
, (2)

where Bi,j represents the uplink channel bandwidth between
vehicle i and base station j, while Pi refers to the uplink
transmission power. The channel attenuation coefficient is
denoted as h0, and follows the complex normal distribution
CN (0, 1). N0 is the noise power spectral density [35], and
the path loss exponent is represented by α.

2) Computation model: In what follows, we will describe
two ways of calculating the task to illustrate the computation
model: a) Local computing; b) Edge computing. In many



5

computation-intensive applications, the output data of the
computational results is often significantly smaller relative to
the input data. Therefore, the amount of time it takes to return
the calculation results to the vehicle can be disregarded.

a) Local computing: When the vehicle opts to perform
task Φi locally, we define Dl

i as the local processing delay,
which accounts solely for the computing capacity of the local
CPUs. Similarly, we introduce f l

i as the available CPU cycles
allocated for processing task Φi. Consequently, we can define
the calculation delay of task Φi as

Dl
i =

ci
f l
i

. (3)

The energy consumption of task Φi is represented by El
i ,

as expressed in the following way:

El
i = k

(
f l
i

)2
ci. (4)

In Eq. 4, k represents effective switched capacitance, deter-
mined solely by chip architecture [36]. In this paper, we set
k = 10−27 [37], [38].

b) Edge computing: When local computing cannot meet
latency requirements, tasks need to be executed at the edge
server. Therefore, tasks need to be transmitted from the local
to the corresponding base station before they can be executed
at the edge. The delay in transmitting task Φi from vehicle i
to base station j is determined by dividing the size of input
data by the uplink transmission rate

Dt
i,j =

di
Ri,j

. (5)

The base station can start the computing procedure after it
has received the vehicle’s offloaded task data. Hence, the base
station’s computation time to complete the offloaded task is

Dc
i,j =

{ ci
fi,j

, fi,j ̸= 0

0, fi,j = 0.
(6)

The computation resource allocated by base station j to task
Φi is represented by fi,j (in CPU cycles/s). Hence, the overall
latency of the task Φi calculated at the base station j is

Di,j = Dt
i,j +Dc

i,j . (7)

The corresponding energy consumption is

Ei,j = PT
i Dt

i,j + P I
i D

c
i,j , (8)

where PT
i is the power used for transmission when vehicle

i is active, while P I
i represents the power consumption when

vehicle i is in an idle state.

D. Problem Formulation
The quality of user experience and the computational ef-

ficiency of the overall VEC network are closely related to
two primary elements: 1) latency; 2) energy consumption. It
is possible to represent the overall latency as

T =

N∑
i=1

[
(1− µi)D

l
i + µi

[
(1− ηi)Di,1 + ηiDi,2

]]
. (9)

The complete latency is comprised of two components,
namely, the local processing duration and the offloading la-
tency.

The total energy consumption for a task also consists of
two parts: energy used for local execution and energy used
for offloading to the edge server. Therefore, to determine
the energy consumption of performing tasks, the following
definition can be used:

E =

N∑
i=1

[
(1− µi)E

l
i + µi

[
(1− ηi)Ei,1 + ηiEi,2

]]
. (10)

The paper aims to improve user experience by decreasing
the global latency of task execution and reducing vehicle
energy consumption. To achieve this goal, we propose the
objective function of the joint task offloading and resource
allocation. Essentially, the problem is an optimization one, as
the aim is to minimize the total delay and energy consumption
by optimizing the offloading strategy and resource allocation.

The following is an expression for the objective function:

Q =γT + (1− γ)E

=γ

N∑
i=1

[
(1− µi)D

l
i + µi

[
(1− ηi)Di,1 + ηiDi,2

]]

+(1− γ)

N∑
i=1

[
(1− µi)E

l
i + µi

[
(1− ηi)Ei,1 + ηiEi,2

]]
.

(11)
The problem of optimization we aim to resolve is expressed

as
min

ηi,µi,fi,j
Q (12)

s.t. ηi, µi ∈ {0, 1} ∀i ∈ N, (13)
fi,j ≥ 0 ∀i ∈ N, ∀j ∈ {1, 2}, (14)
N∑
i=1

fi,j ≤ Fj ∀i ∈ N, ∀j ∈ {1, 2}. (15)

The weighting factor γ can be used to adjust the tradeoff
between computing latency and energy consumption in the
objective function, which is defined as the weighted sum of
the overall latency and energy consumption. The value of the
weighting factor can vary with the situation. If the emphasis
is on energy saving, the value is close to 0, and when the
focus is on latency performance, the value is close to 1. In
the optimization problem, Eq. 13 represents that each task
is indivisible and can only be processed one way at a time;
Eq. 14 represents the constraint on the amount of computation
resource allocated to vehicle i; Eq. 15 indicates that the edge
server’s allocation of computing resources to total tasks must
not surpass the maximum CPU frequency.

IV. TASK CLASSIFICATION AND OFFLOADING

This section intends to minimize the objective function.
Specifically, the optimization problem addressed in this paper
falls under the category of mixed integer nonlinear program-
ming (MINLP). It involves integer and continuous variables
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Algorithm 1: Task Classification Algorithm

input : Φi = {ci, di, Ti}, i=1,...N, Di, vi, P veh
i

output: Ωi

1 for i← 1 to N do
2 ti =

Di

vi
;

3 if P veh
i is within eNB coverage, not gNB then

4 select single base station offloading mode;
5 Ωi ← Φi = {ci, di, Ti}, Fl, FeNB , ReNB ;
6 end
7 if P veh

i is within gNB coverage then
8 if ts < Ts then select single base station

offloading mode;
9 else select dual base station offloading mode;

10 Ωi ← Φi = {ci, di, Ti}, Fl, FgNB , RgNB ;
11 end
12 return Ωi

13 end

as well as nonlinear feasible regions, etc [39]. To begin,
we introduce the task classification algorithm, which helps
determine the offloading node and method for each task, that
is, if the task chooses to offload, whether it is performed by
a single base station or collaboratively by two base stations.
Then we use the linear relaxation improved branch-and-bound
algorithm (BBA) to find the optimal solution.

A. Task Classification Algorithm

After receiving a task request from target vehicle i, the MEC
server retrieves the vehicle’s speed and location. If the vehicle
i is in the coverage area of the eNB when sending the request,
the task can only be executed by the eNB alone if it is selected
for edge execution. If the vehicle i is located within the
coverage area of the gNB, it is necessary to determine whether
the task is performed by the gNB alone or collaboratively by
the dual base stations. First, we calculate the driving time ti of
vehicle i in the range of communication, which is determined
by dividing the driving distance Di within the range by its
speed vi. Second, we evaluate the relationship between driving
time ti and the delay limitation Ti. If ti > Ti, the task
Φi would be calculated by a single base station. Otherwise,
the task Φi would be calculated collaboratively by gNB and
eNB. The specific method of task classification is presented
in Algorithm 1.

B. Branch-and-Bound Algorithm

We use the BBA algorithm to solve the non-convex MINLP
problem. Firstly, we transform it into a convex optimization
problem. Then, we combine this convex optimization problem
with a branch-and-bound constraint framework as a solution
to the original problem. The specific calculation steps are as
follows.

According to Algorithm 1, our decision set η =
{η1, η2, ..., ηn} can be determined, so we only need to relax
the 0-1 variable µi to 0 ≤ µi ≤ 1. To prevent errors caused
by a denominator of 0 (i.e., when fi,j = 0), a new variable δ

will be defined. Therefore, the original objective function Q
is transformed into a new function Q1 .
Q1 :

min
µi,f

j
i

γ

N∑
i=1

[
(1− µi)

ci
f l
i

+ µi

[
(1− ηi)

( di
Ri,1

+
ci

fi,1 + δ

)
+ ηi

( di
Ri,2

+
ci

fi,2 + δ

)]]

+ (1− γ)

N∑
i=1

[
(1− µi)κ(f

l
i )

2ci

+ µi

[
(1− ηi)

(
PT
i

di
Ri,1

+ P I
i

ci
fi,1 + δ

)
+ ηi

(
PT
i

di
Ri,2

+ P I
i

ci
fi,2 + δ

)]]
(16)

s.t. 0 ≤ µi ≤ 1 ∀i ∈ N. (17)

Solving problem Q1 yields both the upper and lower bounds
of the objective function Q . Next, we proceed to reformulate
the problem as Q2 by introducing an auxiliary variable, in
which αi,j = (fi,j + δ)

−1.
Q2 :

min
µi,αi,j

γ

N∑
i=1

[
(1− µi)

ci
f l
i

+ µi

[
(1− ηi)

( di
Ri,1

+ ciαi,1

)
+ ηi

( di
Ri,2

+ ciαi,2

)]]

+ (1− γ)

N∑
i=1

[
(1− µi)κ(f

l
i )

2ci

+ µi

[
(1− ηi)

(
PT
i

di
Ri,1

+ P I
i ciαi,1

)
+ ηi

(
PT
i

di
Ri,2

+ P I
i ciαi,2

)]]
(18)

s.t. 0 ≤ µi ≤ 1 ∀i ∈ N (19)
1

δ + µiFj
≤ αi,j ≤

1

δ
∀i ∈ N, ∀j ∈ {1, 2} (20)

N∑
i=1

(
1

αi,j
− δ

)
≤ Fj ∀i ∈ N, ∀j ∈ {1, 2}. (21)

The objective function in problem Q2 contains a quadratic
form with discrete variables, rendering it nonconvex. To
resolve this, a new variable will be defined to replace the
quadratic form, enabling the transformation of problem Q2
into an optimization problem with convex constraints. We
define ξi,j = µi · αi,j . The range of µi is 0 ≤ µi ≤ 1 and
the range of αi,j is 1

δ+µiFj
≤ αi,j ≤ 1

δ . So, there are some
constraints on the new variable ξi,j

(µi − 0) ∗ (αi,j − 1
δ+µiFj

) ≥ 0

(1− µi) ∗ (αi,j − 1
δ+µiFj

) ≥ 0

(µi − 0) ∗ ( 1δ − αi,j) ≥ 0

(1− µi) ∗ ( 1δ − αi,j) ≥ 0.

(22)
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Then, replacing ξi,j = µi · αi,j

ξi,j − µi
1

δ+µiFj
≥ 0

αi,j − 1
δ+µiFj

− ξi,j + µi
1

δ+µiFj
≥ 0

µi
1
δ − ξi,j ≥ 0

1
δ − αi,j − µi

1
δ + ξi.j ≥ 0.

(23)

The convex optimization problem Q3 is obtained by replac-
ing the objective function of Q2 with the new variable.
Q3 :

min
µi,ξi,j

γ

N∑
i=1

[
(1− µi)

ci
f l
i

+ (1− ηi)

(
µi

di
Ri,1

+ ciξi,1

)

+ ηi

(
µi

di
Ri,2

+ ciξi,2

)]

+ (1− γ)

N∑
i=1

[
(1− µi)κ

(
f l
i

)2
ci

+ (1− ηi)

(
µiP

T
i

di
Ri,1

+ P I
i ciξi,1

)
+ ηi

(
µiP

T
i

di
Ri,2

+ P I
i ciξi,2

)]
s.t. (19), (20), (21), (23).

(24)

Through the solution of the convex optimization problem,
we can readily obtain the best solution for problem Q3 and
consequently derive the lower bound of the objective function
Q . Then, the following method enables us to obtain the value
of µi:

µi =

{
0, µi ≥ 0.5
1, µi < 0.5

∀i ∈ N. (25)

When the value of µi is determined, we assume that m tasks
are processed locally and N −m tasks are offloaded to edge
computing. Therefore, we can rephrase problem Q1 as

Q4 :

min
f
j
i

m∑
i=1

[
γ
ci
f l
i

+ (1− γ)κ(f l
i )

2ci

]

+

N∑
i=m+1

[
(1− ηi)

[
(γ + (1− γ)PT

i )
di
Ri,1

+ (γ + (1− γ)P I
i )

ci
fi,1 + δ

]
+ ηi

[
(γ + (1− γ)PT

i )
di
Ri,2

+ (γ + (1− γ)P I
i )

ci
fi,2 + δ

]]
(26)

s.t. (14), (15). (27)

By finding the optimal solution for Q4 , we can determine
the upper limit of objective function Q . Q3 and Q4 problems
help us find the lower and upper limits of the objective func-
tion. Subsequently, we utilize the branch-and-bound algorithm,
described in Algorithm 2, to discover the desirable solution
for the initial problem.

Algorithm 2: BBA Algorithm
1: Initialization:
2: set the upper bound UB = +∞ and Q∗ = ∅
3: initialize the original problem Q

4: Linear Relaxation:
5: obtain problem Q1 from Q

6: Convex optimization:
7: obtain problem Q3 from Q

8: obtain the lower bound LB∗ of the Q by solving Q3

9: Iteration:
10: compare LBn1 and LBn2 and select the lowest value

LBn in Q

11: set LB = LBn

12: obtain suitable value of µ according to Eq. 25.
13: obtain the upper bound UBn of the Q by solving Q4 and

get the solution OPTn = (µ, f)

14: If UBn < UB

15: update UB = UBn and OPT = OPTn

16: If UB == LB , output the optimal solution OPT

17: otherwise, remove LBn > UB branches
18: Branch:
19: split the current branch into n1 and n2

20: Bounding:
21: obtain the lower bound LBn1 and LBn2 by solving n1 and n2

22: If LBn1 < UB , insert n1 into Q

23: If LBn2 < UB , insert n2 into Q

24: If Q == ∅, finish iteration and output the current OPT

25: otherwise, proceed to the next iteration
Output: the optimal solution UB and OPT

TABLE II: Execution time of the BBA

Number of vehicles Execution time (s)
10 4.98
20 11.27
30 21.59
40 42.70

C. Computational Complexity

In this subsection, we analyze the complexity of the al-
gorithms proposed in this paper and the execution time in
different task scenarios.

Complexity analysis: For Algorithm 1, it is necessary to
traverse each task to determine the type of task that belongs
to a single base station execution or dual base station execu-
tion, so the time complexity is O(n). For Algorithm 2, the
branch-and-bound algorithm is an iterative algorithm, each
iteration solving the corresponding relaxation of the linear
programming problem, and the iteration is ended when the
upper and lower bounds are very close to each other. Thus
when determining the optimal offloading decision for n tasks,
the time complexity of the algorithm is O(2n). This results in
a final time complexity of O(n+ 2n).

Execution time analysis: We tested the execution time of
the algorithm for different numbers of vehicles on a laptop
computer equipped with an Intel(R) Core(TM) i5-13500H
CPU at 2.90 GHz and 32 GB of RAM. The development tool
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(a) Edge server CPU of 5 GHz (b) Edge server CPU of 8 GHz (c) Edge server CPU of 11 GHz

Fig. 4: Q function vs. edge server CPU size.

was MATLAB R2022b installed on a Windows 11 Home 64-
bit platform. The specific experimental results are shown in
Tab. II. It can be seen that the execution time of the algorithm
increases according to the trend of 2n, and it can show
better performance when the number of vehicles is within a
reasonable range.

Considering the complexity and longer computational time
of such algorithms, there has been a lot of research on using
machine learning assisted branch and bound algorithms to
solve combinatorial optimization problems with significant
results [40], [41], making the branch-and-bound algorithm
better in terms of both solution accuracy and computational
time.

V. SIMULATION RESULTS

In this section, we perform a comprehensive analysis of
simulation results aimed at evaluating the performance of the
proposed offloading scheme.

A. Setup

We consider a bidirectional road that spans 3000 meters and
has base stations situated along it. Each of these base stations
is equipped with a VEC server. Edge servers have a computa-
tional capacity of at least 5 GHz, while the CPU frequency of
the vehicles is 0.8 GHz. According to the system model, in a
certain time slot, there are N vehicles that simultaneously send
task processing requests to the edge servers. Additionally, we
assume that the vehicle speed belongs to [30,80] km/h and the
vehicle is traveling at a constant speed on the road. The size of
the task and required computation resources follow Gaussian
distributions: di ∼ N (900, 300) KB and ci ∼ N (2000,
200) MHz, respectively. The maximum latency constraint for
each computation task is randomly generated from a uniform
distribution, Ti ∼ U [1, 5] s. The simulations are performed
in MATLAB. The communication parameters used in our
simulations are summarized in Tab. III [34].

To conduct a comparative analysis, this paper explores four
methods through simulation experiments.

1) The heuristic scheme (Heuristic) [2]. Within the VEC
architecture based on heterogeneous cellular networks,

the heuristic scheme specifies that only tasks whose local
computation cannot meet the maximum tolerated latency
are offloaded to the VEC server for execution.

2) Mobility-aware greedy algorithm (MGA) [15]. Accord-
ing to the communication delay of vehicles within the
range of the base station, the algorithm prioritizes the
computing resources to the vehicles with short commu-
nication delay, which can reduce the offloading failure
rate.

3) Local computing algorithm (LOC). This algorithm
involves performing all tasks on the local vehicles without
any task offloading, where µi = 0,∀i ∈ N .

4) Edge computing algorithm (EDG). Unlike the LOC
algorithm, this algorithm doesn’t require local comput-
ing. Instead, it offloads all tasks to the edge server for
execution, where µi = 1,∀i ∈ N .

TABLE III: Main Parameters Setting

Parameter Value

LeNB 1000 m
LgNB 300 m
di N (900, 300) KB
ci N (2000, 200) MHz
Ti U [1, 5] s

Bi,eNB 1 MHz
Bi,gNB 10 MHz
PT
i 100 mW

P I
i 10 mW
α 2
N0 5× 10−5 W
γ 0.8

B. Q Function

Fig. 4 shows the objective function Q value versus the vary-
ing number of vehicles with different edge server CPU sizes.
In order to demonstrate the distinction, we have set the CPU
size of each base station to 5, 8, and 11 GHz, as illustrated
in Fig. 4 (a)–(c), respectively. To ensure a fair comparison,
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Fig. 5: Average latency vs. total required CPU.

Fig. 6: Average latency vs. number of vehicles.

we have established an equal task size range for each vehicle.
We can notice that the Q value of all schemes grows as the
CPU size increases except for the local computing algorithm,
and especially the edge computing algorithm changes most
obviously. Moreover, the MGA algorithm and the heuristic
scheme have similar Q values, however, as the edge server
CPU size increases, the performance of the heuristic scheme
is obviously better than MGA, that is because, in the case
of sufficient edge computing resources, the Heuristic can
basically guarantee that all tasks are completed within the
maximum tolerable delay while MGA can only ensure the
success rate of offloading tasks with high priority. After com-
paring the behaviors of various schemes, it becomes evident
that the proposed scheme achieves the lowest Q value when
tested on CPUs of all sizes. The reason is that the proposed
BBA algorithm takes into consideration both the benefits of
edge computing and local processing capabilities. Balancing
these factors can greatly diminish the overall latency and
energy consumption. In addition, dual base station cooperative
offloading allows more tasks to be performed at the edge.
Therefore, the BBA algorithm always has the lowest value.

C. Latency

The effect of the total required CPU on the average latency
is depicted in Fig. 5. We assume that the CPU of the server is
8 GHz and the number of vehicles is 20. It can be observed
that the average latency of all schemes increases rapidly as
the total required CPU increases, especially for the LOC
algorithm. This implies that the computing resource required
to complete the task is one of the most critical factors affecting
the completion delay. Furthermore, we can note that when the
total required CPU is lower, the performance of MGA is better
than that of Heuristic. As the total required CPU increases,
the average latency of the Heuristic is gradually lower than
that of MGA. That is because when the task requires a small
number of computing resources, as long as the maximum
tolerated delay is not exceeded by the local computing latency,
the Heuristic will give priority to the task to be executed
locally, and MGA will give priority to the edge offloading
regardless of the size of the required resources. Therefore, as
the required computing resources increase, due to the limited
edge resources, low-priority tasks can only be executed locally
in MGA, thereby increasing the average latency. BBA jointly
optimizes local and edge computing resources to give the
most reasonable offloading decision to ensure the lowest global
delay and energy consumption. As a result, the BBA algorithm
outperforms other schemes.

Fig. 6 illustrates the influence of the varying number of
vehicles on the average latency of total tasks. Here, we fixed
the maximum tolerable delay of tasks as 3 seconds, and the
computing resources required by each task are in the same
value space. Due to the limitation of edge resources, the more
vehicles there are, the less effective resources are allocated
to each task, so the average latency of the EDG algorithm
grows rapidly as the number of vehicles increases. For the
other algorithms, we can see from Fig. 6 that except the
local computing algorithm remains stable regardless of the
number of vehicles, the average latency of other algorithms
increases slowly with the increase of vehicles and gradually
approaches the local computing. This result is interpreted by
the fact that the more vehicles, the greater the competition for
edge resources, which will lead to some vehicles being forced
to compute locally due to insufficient resource allocation, so
the average latency gradually increases. Since local computing
without resource competition itself, it can maintain a relatively
stable trend, but it also has the largest delay compared to other
algorithms. As a result, it can be demonstrated that a task
offloading and resource allocation strategy is required in a
situation where many vehicles compete for limited resources.

D. Energy Consumption

As displayed in Fig. 7, with the data size increases, it
becomes apparent that more energy is needed for computation.
In addition, we can also notice that MGA has the lowest energy
consumption when the task is smaller. However, its energy
consumption exceeds that of the other two algorithms with
the task increases. It is because when the tasks generated by
the vehicles are small, tasks are more likely to be processed
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Fig. 7: Total energy consumption vs. total task size.

Fig. 8: Failure rate vs. total required CPU.

locally according to the heuristic scheme, but in MGA the
tasks are prioritized to be computed at the edge. When the
task size increases, the MGA does not have enough resources
for low-priority tasks, so they can only process locally. The
BBA algorithm proposed in this paper needs to consider
both global delay and energy consumption to make the best
offloading strategy, while the heuristic scheme only needs to
ensure that the task is finished within the maximum tolerated
delay. In conclusion, the heuristic algorithm outperforms other
algorithms in terms of energy consumption when the total task
size is larger.

E. Failure Rate

The failure rate of the execution for the tasks offloading is
another key metric to assess the effectiveness of the vehicular
edge computing system. Since the LOC and EDG schemes
are not part of the optimization algorithm, the task failure rate
is always the largest for LOC and the second highest for the
EDG scheme under the same comparison conditions. In this
subsection, we mainly compare the performance of the other
three optimization algorithms.

As intuitively shown in Fig. 8, with the increase of to-
tal required CPU, the task completion failure rate of each

Fig. 9: Failure rate vs. maximum tolerable delay.

scheme does not display a gradual upward trend. This also
demonstrates that the success rate of task execution depends
on various factors, including the size of the task data, the
location of the vehicle when sending the request, and the
number of vehicles requesting access to the same base station.
Most significantly, it can also be observed that the performance
of the Heuristic in the failure rate is better than that of BBA
and MGA. Compared to BBA, the heuristic scheme determines
the offloading strategy by comparing the local computing
delay with the maximum tolerable delay regardless of the
overall latency and energy consumption, so it can ensure that
most tasks are processed with the maximum tolerable delay.
MGA prioritizes the allocation of computing resources to tasks
with short communication delays. Although the success rate
of high-priority tasks is guaranteed, it leads to unreasonable
utilization of resources, and low-priority tasks can only be
forced to calculate locally. Therefore, the way of dual base
station cooperative offloading can not only ensure the success
rate of tasks with short communication delays but also make
rational use of edge resources.

Fig. 9 shows the failure rate of total task executions by
changing the fixed maximum tolerable delay. It can be seen
that with the increase of the maximum tolerable delay, the
failure rate of the three algorithms is all reduced, and in any
case, the heuristic scheme has the lowest value and the BBA
is second only to it. The reason is that the Heuristic allocates
edge computing resources to tasks with a time limit of
maximum tolerable latency. Based on the same edge resources,
Heuristic allows more tasks to be executed at the edge server
than BBA, so Heuristic actually guarantees the success rate by
extending the completion latency of tasks. In addition, BBA
and Heuristic both promise the successful offloading of short
communication delay tasks by collaborating with the dual
base station, while MGA allocates edge resources by priority.
Although tasks with high priority can successfully complete
offloading, this allocation strategy leads to a higher global
failure rate than other algorithms. Therefore, it can be seen
that dual base station collaboration to complete task offloading
is necessary to increase the success rate of IoV applications.
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Fig. 10: Average latency vs. number of vehicles.

Fig. 11: Total energy consumption vs. number of vehicles.

F. Impact of Weighting Parameter γ

In order to explore the effect of the weighting parameter γ
on the proposed objective function. We analyzed the average
latency and total energy consumption of all tasks when γ was
set to 0.2, 0.5, and 0.8 for scenarios of different numbers of
vehicles (i.e., 10, 20, 30, and 40), respectively.

It can be seen in Fig. 10, the average latency of the task
gradually decreases as γ increases. This shows that the larger
the value of γ, the more the algorithm is optimized for
latency performance. Similarly, Fig. 11 indicates that when
γ is smaller, the algorithm focuses more on optimizing the
energy consumption of the task.

Therefore, we can conclude that the optimization focus of
the algorithm can be effectively controlled by adjusting the
trade-off parameter γ. Adapting γ to the actual needs of the
task is essential to improve the quality of user experience.
If the task is latency intensive, then γ can be set larger to
reduce the completion delay of the task. Conversely, setting
γ smaller reduces the energy consumption of the task, which
can result in longer endurance for the base station and the
vehicle. Combined with Fig. 4, we can demonstrate that the
BBA algorithm can achieve a balance between task latency
and energy consumption, and maintain both latency and energy

Fig. 12: Q function vs. number of vehicles.

Fig. 13: Failure rate vs. number of vehicles.

consumption at a low level.

G. Effectiveness and Compatibility

In order to explore the effectiveness and compatibility
of collaborative task offloading for heterogeneous cellular
networks in multiple-base station scenarios, we present the
following experimental results in combination with the cross-
region base station selection offloading scheme (CBSO) [12].
Specifically, CBSO addresses three different scenarios of
computation offloading in 5G-enabled EC-IoV systems and
gives the corresponding resource allocation strategy, which
effectively manages the edge computation resources while
reducing the system energy consumption and time cost. We
use dual base station offloading scheme (DBSO) to demon-
strate the effectiveness and compatibility of our approach.
Specifically, DBSO adopts CBSO to solve the problem of
task offloading node selection across regions, and uses our
proposed collaborative offloading in heterogeneous cellular
networks to solve the task offloading and resource allocation
under the same region.

It can be seen from Fig. 12 and Fig. 13 that both Q-value
and success rate of heterogeneous cellular network collabo-
rative offloading are better than CBSO. Although CBSO can
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effectively improve the load balancing between cross-region
base stations, a single base station in the same region is still
unable to support a large number of concurrent task requests.
In the non-standalone networking period of 5G, the use of
heterogeneous cellular networks for cooperative offloading can
further divide the tasks under the same region effectively, and
improve the success rate of task offloading while reducing the
total latency and energy consumption. Based on the experi-
mental data in Fig. 12 and Fig. 13. We demonstrate that the
use of heterogeneous cellular network cooperative offloading
can further reduce the task completion delay compared to the
single base station, and the heterogeneous cellular network
cooperative task offloading algorithm also has good compat-
ibility with the existing base station selection algorithms in
multiple base station offloading scenarios.

VI. CONCLUSION

In this paper, we introduced a VEC architecture based
on the heterogeneous cellular network and presented a joint
optimization problem for task offloading and resource alloca-
tion, which aims to maximize computational efficiency and
minimize total completion latency and energy consumption.
The problem was formulated as an MINLP problem, which
could be resolved through a joint solution involving the task
classification algorithm and the BBA algorithm. Simulation
results demonstrated that the system proposed in this paper
performed better than existing methods in computing latency,
energy consumption, and failure rate. For future work, we
would like to classify tasks according to their criticality in
order to select an offloading strategy that better meets the
quality of user experience as well as the rational use of edge
resources.
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